Такие разные нейтронные звезды

 

Как говорится, «чтобы объединиться, нужно решительно размежеваться» – с размежеванием у нейтронных звезд все было хорошо. Вначале были открыты радиопульсары. Это молодые нейтронные звезды, которые достаточно быстро вращаются, у них есть довольно сильное магнитное поле, и из‑за этого возникает так называемые когерентное нетепловое излучение, генерируемое в магнитосфере. В первую очередь – радиоизлучение, но есть пульсары, которые мы видим пульсирующими во всех диапазонах: в видимом, в инфракрасном, в ультрафиолетовом, в рентгеновском, в гамма. Затем стали открывать молодые нейтронные звезды других типов, например магнитары. Это одно из самых красивых астрономических открытий, когда‑либо сделанных в нашей стране. 5 марта 1979 года в рамках эксперимента «Конус» на аппаратах «Венера» была зарегистрирована очень мощная гамма‑вспышка. После вспышки блеск не упал до нуля, а появились пульсации с периодом несколько секунд. Довольно быстро астрономы поняли, что это нейтронная звезда, нашли, где она находится, и показали, что это молодой объект. В списке наблюдательных проявлений компактных объектов появился новый вид активности молодых нейтронных звезд. Дальше этот зоопарк пополнялся, и к концу 90‑х годов ХХ века существовало с полдюжины различных классов молодых нейтронных звезд, которые проявляли себя как астрофизические источники очень разных типов. Казалось, что каждый из них обречен родиться или радиопульсаром, или магнитаром, или центральным компактным объектом в остатке сверхновых, или еще чем‑нибудь, и это судьба. То есть как у Кьеркегора: «или – или».

 

Приборы эксперимента «Конус». Их аналоги были установлены на аппаратах серии «Венера». Фотография предоставлена сотрудниками Лаборатории экспериментальной астрофизики ФТИ им. Иоффе.

 

Но затем появились новые наблюдения. Оказалось, что объект вовсе не обречен проявлять какой‑то один тип активности: здесь зайчики могут превращаться в белочек (и обратно). Например, жил‑был радиопульсар, наблюдали его исключительно как источник этого типа, и вдруг он начал выдавать вспышки как магнитар – объект из одного класса перешел в другой. Кроме этого, начали открывать транзиентные магнитары[15]. При этом мы уверены, что все это молодые нейтронные звезды. Потихонечку таких данных становилось все больше и больше, возникало все больше связей между разными типами нейтронных звезд. В итоге возник сильный позыв, связанный с реальными данными наблюдений, как‑то объяснить все это в рамках общего сценария.

Так возникла концепция Великого объединения для нейтронных звезд, которая должна позволить объяснить все это многообразие типов источников единой физикой, единой эволюционной картиной.

 

Связующий элемент

 

Основной вопрос, который здесь возникает, – как устроены эволюционные связи между объектами разных типов, есть ли какой‑то единый путь? Например, последовательность может быть строго задана: объект рождается как магнитар, потом проявляет себя как остывающая нейтронная звезда типа объектов из Великолепной семерки, потом – как радиопульсар. Или единого пути нет и возможны самые разные варианты развития событий, а какие‑то параметры или их сочетания за это отвечают. Ведь если мы говорим об эволюции, то мы говорим об изменении каких‑то параметров, каких‑то свойств.

Нейтронная звезда с астрофизической точки зрения – объект довольно простой: есть не так много параметров, которые описывают все ее основные проявления. Давайте посмотрим, какие они у нейтронной звезды.

Во‑первых, масса. Масса у реальных нейтронных звезд заключена в довольно узком диапазоне примерно от 1 до 2 масс Солнца. Нижний предел определяется свойствами звездных ядер и пределом Чандрасекара (с учетом гравитационного дефекта масс)[16]. А верхний связан с устойчивостью вещества относительно окончательного коллапса в черную дыру. Если мы говорим про одиночные звезды, можно с высокой точностью считать, что масса постоянна, никакой эволюции здесь просто так не устроишь.

Во‑вторых, скорость. Скорость, с которой нейтронная звезда движется относительно своих соседей и окружающей межзвездной среды. С одной стороны, мы знаем, что объекты разных типов могут иметь очень разные скорости, с другой – нейтронную звезду быстро не замедлишь/не ускоришь. То есть тоже не получается сделать какую‑то эволюцию.

Следующий важный параметр – период вращения. От него действительно зависит очень многое. Мы знаем, что он сильно эволюционирует, но у одиночных объектов изменяется практически в одну сторону: они вращаются все медленнее и медленнее, и медленнее, так как в данном случае нет никакого специального механизма, раскручивающего нейтронную звезду. Так что снова устроить какую‑то сложную эволюцию, меняя период, не получается (кроме разве что момента включения сверхтекучести нейтронов в коре нейтронной звезды, когда она достигла соответствующей температуры – но это разовый и не очень сильный эффект).

Потом температура. С температурой все сложнее. Конечно, существует общий тренд – объект должен остывать, – но у нейтронной звезды могут быть внутренние источники тепла, которые позволяют ей или долго оставаться горячей, или даже подогреваться со временем. Однако, хотя температура может довольно сильно изменяться, сама по себе она не причина резких изменений поведения нейтронной звезды. Скорее уж температура отражает изменения, происходящие со звездой. Как часы на вокзале – поезд приходит не потому, что на часах 11 (вы можете часы убрать, остановить, перевести и т. д.). Просто точные часы вам показывают, когда должен приходить поезд.

И тогда у нейтронной звезды остается один важный изменяющийся (и со временем, и от объекта к объекту) параметр – это магнитное поле.

Нейтронные звезды обладают сильными магнитными полями. Сильные – это действительно очень большие величины. На поверхности Солнца (вне пятен) магнитное поле в среднем примерно такое же, как на земных магнитных полюсах. Есть звезды, на поверхности которых магнитные поля в сотни раз больше, чем на Солнце. На белых карликах магнитные поля бывают почти в миллиард раз сильнее, чем на Земле. А вот на поверхности нейтронных звезд поля больше, чем на Солнце или на Земле в тысячу миллиардов раз, иногда даже в миллионы миллиардов раз. То есть они в самом деле гораздо сильнее, и для этого есть несколько причин.

Первая очень простая: нейтронная звезда образуется при сжатии ядра обычной звезды, и магнитное поле при сжатии усиливается. Коллапсируя, вещество тянет магнитное поле за собой и как бы спрессовывает его. Давайте нарисуем силовые линии, как в школе все рисовали силовые линии обычных магнитов – получалась эдакая бабочка. Теперь представьте, что вы это нарисовали, а потом рисунок начали сжимать, число силовых линий осталось то же самое, но шарик (наше коллапсирующее ядро звезды), через который они проходят, становится все меньше, плотность линий возрастает, это и соответствует увеличению магнитного поля.

Есть и вторая причина, так как, по всей видимости, первой недостаточно, чтобы объяснить происхождение поля у самых экстремальных нейтронных звезд. Для образования магнитных полей наиболее замагниченных нейтронных звезд, таких как магнитары, нужен какой‑то специальный механизм усиления магнитного поля. Как он работает, мы пока не знаем, но, по всей видимости, он есть, и это важная задача – определить его и описать на языке физической теории.

Итак, магнитное поле – это уже хороший параметр, потенциально подверженный интересным вариациям. Хотя в течение долгого времени казалось, что его эволюция тоже должна быть простой. Самая простая эволюция – это отсутствие эволюции. Параметр всегда остается постоянным. Чуть более сложная эволюция – это монотонное уменьшение, затухание. Мы привыкли видеть все распадающимся, если нет каких‑то источников энергии или чего‑то еще, что компенсирует регресс.

Здесь надо вспомнить, откуда вообще берутся магнитные поля. Нейтронная звезда – это не магнит в обычном смысле, т. е. не железка, синяя с одной стороны и красная с другой. Магнитное поле обычного магнита связано с молекулярными токами. У нейтронных звезд магнитные поля порождаются крупномасштабными токами. То есть, говоря о магнитных полях, мы должны себе представлять, что где‑то внутри нейтронной звезды текут очень мощные токи, которые генерируют это самое магнитное поле. И здесь уже открывается простор для фантазии теоретиков, потому что, оказывается, токи можно делать сильнее и слабее, можно придумать процессы, которые будут эти токи менять. Хотя общий ход изменений, конечно, все равно направлен к уменьшению величины токов, но они могут сложно эволюционировать. Может меняться не только их величина, но и структура. Кроме того, магнитное поле можно экранировать. Если мы окружим нейтронную звезду оболочкой, своеобразным экраном, из какого‑то проводящего материала, то снаружи мы можем не увидеть магнитное поле или видеть его существенно ослабленным, и это тоже, как ни странно, может работать в астрофизике. Таким образом, сейчас начала складываться картина Великого объединения нейтронных звезд, где все основные идеи завязаны на эволюцию магнитного поля. Оказалось, что это действительно очень хороший параметр.

Магнитные поля очень разные у объектов разных типов: у магнитаров побольше, у пульсаров поменьше, у центральных компактных объектов в остатках сверхновых еще меньше. Кроме того, магнитное поле может иметь, как говорят, разную топологию, сильно упрощая – разную форму. Может быть очень простое поле, как вот та самая «бабочка» у школьного магнита, а могут быть, например, маленькие петельки сильного поля вблизи поверхности. Получается, что вдали мы видим поле не очень сильное, а вблизи поверхности оно очень большое. Или поле может быть каким‑нибудь скрученным‑перекрученным, и оно будет приводить к процессу дополнительного выделения энергии. Благодаря этому стало возможным объяснить, откуда берутся транзиентные магнитары – у них эволюционирует магнитное поле. Иногда одна из компонент магнитного поля усиливается, а потом вдруг его энергия начинает активно выделяться. Грубо говоря, начинают происходить короткие замыкания в нейтронной звезде, и звезда порождает серию вспышек. Закончился этот эпизод активности – поле опять в среднем стало меньше, и объект может быть виден как, например, обычный радиопульсар.

 

Секретные поля

 

В последние годы астрофизики обратили внимание на один эволюционный механизм, который мы уже упоминали выше. Он позволяет добавить, вероятно, последнюю существенную связь между разными типами нейтронных звезд. В этом сценарии можно увеличивать наблюдаемое в основных астрофизических процессах магнитное поле компактных объектов.

Идея состоит вот в чем. Как рождается компактный объект? Жила‑была массивная звезда. В конце ее жизни произошел взрыв сверхновой. Внешние слои улетели, железное ядро сжалось – образовалась нейтронная звезда. Все хорошо, но не все сбрасываемые слои могут улететь бесконечно далеко. Гравитация у компактного остатка все равно достаточно сильная, кроме того, ударные волны помогают замедлить разлетающееся части звезды, и часть вещества может упасть обратно. Падающее вещество – это очень хороший проводник электричества. Магнитное поле создает в проводящем слои такие токи, которые компенсируют поле для внешнего наблюдателя. Возможна такая ситуация, когда вещества на нейтронную звезду падает достаточно много, чтобы прижать магнитное поле к поверхности. Тогда получается забавный объект. Внутри у вас может быть нейтронная звезда с очень большим полем или, можно сказать, с очень большими текущими в ней токами, но снаружи все это завалено толстым слоем проводящего вещества, и наблюдатель на бесконечности видит объект с очень маленьким полем. Такая звезда очень плохо замедляется, никакой бурной активности не наблюдается: мы просто видим десятикилометровый шарик, который светится в соответствии со своей температурой где‑нибудь около миллиона градусов, – и все. Нам он представляется спокойным объектом. Но там внутри может быть что угодно, включая магнитар.

Один из активно изучаемых сейчас объектов как раз является кандидатом в такие заваленные, или «спрятанные», магнитары. Обнаружилось это довольно интересным способом. Этот объект наблюдается в рентгеновском диапазоне, и его излучение пульсирует. Но это не значит, что объект сжимается или расширяется, просто на его поверхности есть более горячие области и более холодные. Нейтронная звезда вращается вокруг своей оси, и поэтому иногда мы видим больше горячей поверхности, иногда – меньше. Соответственно, к нам приходит то больше, то меньше излучения. Так вот, наблюдаемые пульсации очень сильные, и когда астрофизики попытались это промоделировать, то оказалось, что, чтобы создать такую неоднородную температуру на поверхности, нужно очень сильное магнитное поле. А мы видим по замедлению вращения, что поле‑то у него вроде бы слабое. Единственное разумное объяснение состоит в том, что наружное поле, которое отвечает за замедление нейтронной звезды, имеет маленькую величину, а внутри, в коре компактного объекта, текут большие токи, поддерживается сильное поле, которое закрыто от нас вот этим напа́давшим материалом. Это не навечно, а с точки зрения жизни нейтронных звезд – на совсем короткий промежуток времени. За несколько десятков тысяч лет поле все‑таки выберется наружу за счет диффузии.

Таким образом, придуман механизм (и найдено наблюдательное свидетельство в пользу того, что он может реализовываться), который позволяет превращать самые спокойные нейтронные звезды в самые буйные. То есть можно на несколько тысяч или десятков тысяч лет запереть нейтронную звезду, успокоить ее в эдакой смирительной рубашке, а потом все‑таки магнитное поле нейтронной звезды проберется наружу, и из этой скорлупы вылупится магнитар.

Если этот процесс действительно реализуется в природе, то фактически у нас в руках оказываются эволюционные сценарии, которые связывают вместе все известные на сегодняшний день классы нейтронных звезд. Остается только построить детальные компьютерные модели жизни нейтронных звезд на основе этих сценариев и показать, что они соответствуют наблюдательным данным. С другой стороны, наблюдения позволили на протяжении последних 20 лет настолько расширить зоопарк нейтронных звезд, что мы психологически готовы к новым неожиданностям. Так что вполне возможно, что через несколько десятков лет или даже всего через несколько лет появятся какие‑то новые удивительные объекты, которые не будут вписываться в нарисованную нами картину. В этом случае процесс Великого объединения нужно будет продолжать дальше и искать какие‑то новые эволюционные связи между разными типами компактных объектов. Возможно, что для этого понадобится и новая физика.

 

 








Дата добавления: 2016-01-29; просмотров: 892;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.