Атмосферы нейтронных звезд
Несмотря на колоссальную силу тяжести, над поверхностью нейтронной звезды имеется тонкая атмосфера, иногда существенно меняющая наблюдаемые свойства компактного объекта.
Толщина атмосферы определяется температурой в ней, ее составом и гравитацией. Проделав не очень сложные вычисления, можно получить, что у нейтронных звезд атмосфера простирается ввысь на несколько миллиметров или сантиметров. Немного? Немного. Не густо? А вот как раз густо! Атмосферы достаточно плотные, чтобы сильно изменить спектр теплового излучения поверхности.
Из чего состоит такая атмосфера? Поверхность нейтронной звезды может в основном состоять из железа (помним, что коллапсирует железное ядро). Значит, и для атмосферы это одна из возможностей. Такие атмосферы самые тонкие, потому что атомы тяжелые. Общий характер спектра будет похож на тепловой (планковский), но в нем можно ожидать наличие множества спектральных деталей. К сожалению, рассмотреть их непросто.
Однако после коллапса железного ядра на него могут выпадать внешние слои из более легких элементов. Поэтому атмосфера может содержать не только железо, но и все, что было в сверхновой. Причем более тяжелые элементы легко выпадают в осадок. Так что если сверху «налить» немного водорода, то атмосфера для внешнего наблюдателя будет в основном водородной. Такие атмосферы самые толстые. И они довольно сильно меняют спектр. В рентгеновском диапазоне (а именно там мы обычно наблюдаем поверхности нейтронных звезд с температурой около миллиона градусов) они кажутся горячее, чем есть на самом деле. И это может сбить исследователей с толку.
Наконец, при некоторой комбинации температуры, состава и магнитного поля на поверхности может образоваться конденсат, о котором мы упоминали выше. Тогда нейтронная звезда станет «серой». Спектр будет казаться тепловым, но соответствующим более низкой температуре. В этом случае, определяя радиус звезды по излучаемой светимости и температуре, можно сильно ошибиться.
К счастью, есть способы подобрать правильный состав атмосферы, изучая спектр нейтронной звезды. В случае центрального компактного объекта в остатке сверхновой Кассиопея А, например, оказалось, что атмосфера в основном состоит из углерода. Правильное определение состава очень важно, ведь без учета этого тонкого‑тонкого слоя можно ошибиться в определении температуры поверхности, а тем самым неправильно определить температуру недр, остывающих благодаря излучению нейтрино.
Нейтрино из ада
Новорожденная нейтронная звезда – это очень горячий объект. Температура недр некоторое время превышает миллиарды градусов. Примерно первые 100 000 лет своей жизни нейтронная звезда остывает в основном не с поверхности, как делает всякое нормальное тело, а из центра за счет испускания нейтрино. В это время температура недр составляет сотни миллионов градусов. Происходит забавный процесс: тепло течет вглубь звезды, где в некотором смысле исчезает (поскольку нейтрино свободно покидает недра нейтронной звезды).
Непосредственно наблюдать нейтрино от остывающих нейтронных звезд мы пока не можем. Регистрировать эти частицы очень сложно, нужны гигантские детекторы, и пока мы надеемся только видеть вспышки сверхновых. Но если нейтрино ускользает из компактного объекта, унося энергию, то поверхность нейтронной звезды постепенно остывает. Вот это можно наблюдать. Для этого в первую очередь подходят рентгеновские детекторы, так как температура поверхности составляет примерно миллион градусов. Конечно, мы видим не сам постепенный процесс остывания одиночных нейтронных звезд (хотя в одном случае, возможно, есть и такие данные, а в двойных довольно часто можно видеть, как нейтронная звезда остывает по окончании стадии мощной аккреции), так как температура заметно падает лишь за столетия. Однако мы можем видеть нейтронные звезды разных возрастов, измерять температуру их поверхности и тем самым получать нам новые знания о ядерной физике, поскольку процессы нейтринного излучения – это процессы, связанные именно с ней. И, таким образом, астрономические наблюдения снова дополняют лабораторные эксперименты.
Наблюдения нейтрино после взрыва сверхновой могут помочь понять, какой компактный объект возник в результате. До рождения ребенка родителей часто очень волнует вопрос: мальчик или девочка? При взрыве сверхновой тоже возможны два варианта. Наблюдения нейтрино при рождении компактного объекта могут помочь определить, возникла ли нейтронная звезда или черная дыра. Если коллапс идет до конца, то поток нейтрино (и их энергия) будет возрастать, а потом резко оборвется. В том случае, когда возникает нейтронная звезда, мы будет видеть более гладкую эволюцию потока. Если бы в 1987 году существовали современные детекторы нейтрино, то мы бы знали, какой компактный объект возник после взрыва в Большом Магеллановом облаке.
Грядущие открытия
Выше мы обещали пофантазировать, какие же еще Нобелевские премии могут быть вручены за исследования нейтронных звезд. Наверное, первая и самая вероятная – это премия за гравитационные волны. Они были предсказаны Общей теорией относительности. Косвенно мы знаем, что они существуют, но очень важно поймать гравитационные волны напрямую с помощью лабораторной установки. Лучший способ это сделать – наблюдать один из самых грандиозных процессов в природе. Слияние двух нейтронных звезд.
Чтобы получить гравитационно‑волновой всплеск большой мощности, потенциально детектируемый современными антеннами, надо начать с массивной двойной звезды. Звезды поочередно взрываются. Каждая порождает нейтронную звезду, и система при этом выживает. В конце концов эти нейтронные звезды сольются, потихонечку сближаясь из‑за излучения гравитационных волн. Финальный аккорд – буквально падение нейтронной звезды на нейтронную звезду. Оно сопровождается выделением огромной энергии и в виде гравитационных и электромагнитных волн.
Это должно быть очень интересно наблюдать. Кроме того, это очень важно для фундаментальной физики. Поэтому уже построено несколько специальных гравитационно‑волновых антенн. Чтобы представить себе, насколько это существенно, можно вспомнить вот что. Когда американцы планировали постройку своих антенн LIGO, одновременно планировался сверхпроводящий суперколлайдер, который должен был бы быть построен в Техасе. Его целью было открыть бозон Хиггса. Потом возникла необходимость сокращения научных бюджетов, и нужно было закрывать какой‑то крупный проект. Так вот, фактически научное сообщество выбрало гравитационные волны вместо бозона Хиггса (конечно, коллайдер намного дороже гравитационно‑волновой антенны, тем не менее при стоимости более полумиллиарда долларов LIGO – это самый дорогой проект, финансировавшийся Национальным научным фондом, NSF, и в 1993 году проект гравитационных антенн был под угрозой закрытия). На фоне огромной популярности бозона Хиггса в наши дни это должно показывать, что есть вещи, по крайней мере по мнению части ученых, настолько же важные, как и этот самый бозон.
Возможно, еще одна Нобелевская премия будет когда‑нибудь вручена за определение свойств вещества в недрах нейтронных звезд. Из чего состоят нейтронные звезды в самой сердцевине – это действительно один из самых больших вопросов в ядерной физике. Для ответа на него у астрономов есть интересный способ.
Снова представьте, что мы берем какой‑то кусок вещества и начинаем его сжимать. Как мы можем это сделать? Скажем, можем взять нейтронную звезду и тихонечко кидать на нее вещество. Она будет становиться все массивнее, будет сама на себя сильнее давить, поджиматься, и плотность в центре будет расти. Мы не можем это делать бесконечно. В какой‑то момент плотность достигнет критической, и вещество перестанет сопротивляться гравитации. Наша нейтронная звезда схлопнется в черную дыру. Если мы узнаем, когда это происходит, т. е. узнаем, какими могут быть самые массивные нейтронные звезды, то, по сути, мы ответим на этот важный вопрос в ядерной физике, связанный с поведением вещества при высокой плотности.
Как это сделать? Конечно, было бы здо́рово наблюдать какой‑нибудь рентгеновский источник с нейтронной звездой, видеть периодически меняющееся излучение с поверхности нейтронной звезды, и вдруг «хоп!» – она исчезнет. Источник, может быть, и останется рентгеновским источником, останется аккреционный диск, но выглядеть он будет уже совсем по‑другому (например, исчезнут пульсации рентгеновского излучения, возникающие из‑за вращения нейтронной звезды), потому что там будет черная дыра.
Это было бы потрясающе, но застать сам момент превращений крайне маловероятно (может быть, нам помогут наблюдения слияния нейтронных звезд: в редких случаях они могут заканчиваться образованием черной дыры). Поэтому можно пойти другим путем, как обычно. Например, можно просто искать все более и более массивные нейтронные звезды. Это перспективное направление исследований, и астрономы, изучающие двойные радиопульсары, именно этой дорогой и идут. Здесь, правда, многое будет зависеть от везения.
Более надежный способ получить данные о поведении вещества в недрах компактных объектов – это одновременно очень точно измерить для какой‑нибудь нейтронной звезды массу и ее размер. Для этого сейчас создаются специальные космические проекты. Один из новых приборов будет установлен на Международной космической станции, другие планируется запустить как отдельные спутники. Возможно, астрономам удастся решить эту загадку – из чего же состоят нейтронные звезды. И, таким образом, заработать Нобелевскую премию по физике.
Нобелевская медаль
[1]Мы говорим здесь лишь о процессах в звездном ядре. В оболочках гигантских звезд может идти синтез тяжелых элементов благодаря так называемые s‑процессу, т. е. медленному захвату нейтронов ядрами элементов. Например, так могут образовываться свинец и стронций.
[2]Так называемая ядерная плотность составляет 2,3×1014 грамм в кубическом сантиметре.
[3]Существует шуточный закон Арнольда, названный в честь великого российского математика, гласящий, что парадоксы и законы чаще всего носят имя не того, кто их впервые придумал. Часть шутки состоит в том, что это верно и для закона Арнольда (его скорее стоит связывать с именем Роберта Мертона). Что касается парадокса Ольберса, или так называемого фотометрического парадокса, то он, видимо, впервые детально обсуждался швейцарским астрономом Жаном‑Филиппом Луи де Шезо в середине XVIII столетия. А в самом общем виде проблема была сформулирована еще Иоганном Кеплером в 1610 году, для которого это был аргумент против бесконечности Вселенной.
[4]Заполнение Вселенной пылью лишь частично решает проблему. Так можно избавиться от видимого излучения далеких звезд, но пыль нагреется, поглощая излучение, и будет переизлучать его. Или даже испарится, если нагреется слишком сильно. Так что проблема темного неба остается, сдвинувшись в другой спектральный диапазон. Детальнее о парадоксе Ольберса и связанных с ним космологических вопросах можно прочесть в книге Владимира Решетникова «Почему небо темное», изд‑во «Век‑2» (2012).
[5]Гигантский телескоп будет раскладываться на орбите. Как это будет выглядеть, можно посмотреть на подробных анимациях: http://jwst.nasa.gov/videos_deploy.html.
[6]О физике черных дыр можно прочесть в книге Леонарда Сасскинда «Битва при черной дыре», изд‑во «Питер» (2013).
[7]Иногда возникает путаница между аккрецирующими рентгеновскими пульсарами в двойных системах, пульсирующими тепловыми источниками в остатках сверхновых, аномальными рентгеновскими пульсарами и радиопульсарами, наблюдаемыми и в рентгеновском диапазоне. Это четыре разных типа объектов, чья светимость связана с разными источниками энергии: аккреция, запасы тепла, энергия магнитного поля и вращение соответственно. Но все они являются источниками пульсирующего рентгеновского излучения, и период пульсаций равен периоду оборота звезды вокруг своей оси. В этом параграфе мы говорим об аккрецирующих нейтронных звездах в двойных системах.
[8]Приток момента импульса соответствует раскручиванию, т. е. усилению вращения, а потеря момента импульса – замедлению вращения.
[9]Теоретические расчеты показывают, что незадолго до достижения предельного периода в компактном объекте могут возбудиться колебания, которые приведут к прекращению ускорения вращения, звезда начнет интенсивно терять момент импульса, т. е. будет замедляться. Зато из‑за этих осцилляций нейтронная звезда может стать источником гравитационных волн. Правда, не настолько мощным, чтобы это можно было заметить с помощью детекторов LIGO или VIRGO, если мы говорим об известных потенциальных кандидатах. Оптимистичные оценки показывают, что следующее поколение детекторов сможет видеть этот эффект при рождении быстро вращающихся нейтронных звезд в сверхновых, вспыхивающих в близких галактиках.
[10]Существует также теоретическая возможность коллапса сверхкритического белого карлика в нейтронную звезду, но прямых наблюдательных подтверждений этой гипотезы нет.
[11]Популярно о теориях гравитации можно прочесть в книге Александра Петрова «Гравитация» (из‑во «Век‑2», 2014).
[12]Большой вклад в понимание природы шумов и способов борьбы с ними на установке LIGO внесла группа Владимира Брагинского с физического факультета МГУ.
[13]Тем, кто хочет увидеть списки известных нейтронных звезд, можно посоветовать онлайн‑каталоги, которые используют профессиональные астрономы. Это в первую очередь каталог радиопульсаров и других периодических одиночных нейтронных звезд на сайте ATNF (Australia Telescope National Facility) http://www.atnf.csiro.au/people/pulsar/psrcat. Затем – каталог магнитаров в университете McGill в Канаде http://www.physics.mcgill.ca/~pulsar/magnetar/main.html. И, наконец, каталог остывающих нейтронных звезд, поддерживаемый Даниэле Вигано http://www.neutronstarcooling.info/.
[14]В деталях об этом можно прочесть в статье Тилмана Сауэра, доступной в Архиве е‑принтов http://arxiv.org/pdf/0704.0963v1.pdf
[15]Транзиентный источник – проявляющий бурную активность, возможно, вспыхивающий в течение какого‑то времени и спокойный в другие промежутки времени, которые обычно более продолжительны. Значит, если мы открываем и наблюдаем магнитар в активной фазе, скажем, как источник мягких повторяющихся гамма‑всплесков, то в спокойной фазе он может вести себя как объект совсем другого типа.
[16]Теоретически нижний предел для массы холодной нейтронной звезды составляет примерно 0,1 массы Солнца. Но при коллапсе ядер такие объекты не образуются. Ядра легких звезд порождают белых карликов, а не маломассивные нейтронные звезды.
[17]Это произошло даже до появления статьи с результатами ПАМЕЛЫ! В качестве источника данных использовали снимки слайдов доклада коллаборации на одной из конференций, что привело впоследствии к обсуждению того, этично ли так поступать.
Дата добавления: 2016-01-29; просмотров: 1884;