Аномальные рентгеновские пульсары

 

Оказалось, что у источников мягких повторяющихся гамма‑всплесков есть родственники. Новый класс одиночных нейтронных звезд был выделен в середине 1990‑х годов сразу несколькими группами ученых, которые изучали так называемые рентгеновские пульсары. Рентгеновских пульсары все тогда представляли исключительно так: это двойные системы, где есть нейтронная звезда и обычная звезда. Вещество с обычной звезды течет на нейтронную, сразу падая на ее поверхность или предварительно закручиваясь в диск. Падающая плазма разогревается до очень высоких температур, и в результате генерируется поток рентгеновского излучения. Напомним, что нейтронная звезда, обладая магнитным полем, каналирует вещество на полярные шапки (примерно как на Земле магнитосфера направляет заряженные частицы в полярные области, и именно там происходят полярное сияния – на севере и на юге нашей планеты). Компактный объект вращается вокруг своей оси, и мы периодически видим то одну полярную шапку, то другую, и таким образом возникает феномен рентгеновского пульсара.

Но исследования показали, что есть странная группа рентгеновских пульсаров, которая отличается от всех остальных. И, немножко забегая вперед, можно сказать, что они оказались магнитарами. Эти странные рентгеновские пульсары имели примерно одинаковые периоды в районе 5–10 секунд (хотя в целом периоды рентгеновских пульсаров заключены в очень широком диапазоне – от миллисекунд до часов). Светимость у них была раз в сто меньше, чем у собратьев. Период вращения все время только увеличивался (в то время как у большинства рентгеновских пульсаров он то уменьшается, то растет). И не наблюдалось никаких свидетельств присутствия второй звезды в системе: не было видно ни самой звезды, ни модуляций излучения, связанных с орбитальным движением. Оказалось, что это в самом деле одиночные нейтронные звезды. Никакого перетекания вещества или, как говорят, аккреции там нет. Просто сама нейтронная звезда имеет очень горячие полярные шапки. Оставалось объяснить почему.

И здесь на помощь как раз приходят сильные магнитные поля. То самое выделение энергии тока, которое происходит не из‑за короткого замыкания, а потихоньку, как в чайнике или электронагревателе, или еще каком‑нибудь электроприборе. Температура выше там, где находится нагревательный элемент, – где течет ток. А потом с помощью теплопроводности, тепло распространяется по всему объему. Поверхность нейтронной звезды действительно можно греть не равномерно, а сильнее прогревать, например, полюса (это происходит из‑за того, что тепло в коре переносят электроны, а им проще двигаться вдоль линий магнитного поля, которые как раз на полюсах направлены к поверхности). Тогда мы тоже будем видеть рентгеновский пульсар.

Какое‑то время обсуждалась гипотеза, что аномальные рентгеновские пульсары могут светить благодаря аккреции. Тогда у них должен быть довольно мощный аккреционный диск. Вещество могло накопиться сразу после взрыва сверхновой. Это могло бы объяснить светимость и периоды источников. Но не объясняет некоторые особенности их всплесков, а главное – вспышки. Оказалось, что некоторые аномальные рентгеновские пульсары могут давать так называемые слабые вспышки, подобные наблюдаемым у источников мягких повторяющихся гамма‑всплесков.

Источники мягких повторяющихся гамма‑всплесков, кстати, между вспышками могут выглядеть как аномальные рентгеновские пульсары. Часть ученых заподозрила, что это «родственники» и роднит их сильное магнитное поле.

 

Сильные поля

 

Почему в случае аномальных рентгеновских пульсаров и источников мягких повторяющихся гамма‑всплесков говорят именно о сильных магнитных полях? Разумеется, строго говоря, даже слабые магнитные поля могут приводить к тому, что какие‑то части поверхности нейтронной звезды будут более горячими. И короткое замыкание в принципе можно устроить без очень сильных магнитных полей. Но, конечно, если поля большие, значит, и токи текут большие. Энергии выделяется больше, и объекты просто заметнее. Это первая причина.

Вторую причину мы не будем детально рассматривать, но вкратце она сводится к тому, что сильные токи быстрее и заметнее эволюционируют. То есть для них темп диссипации энергии действительно выше. Однако детальное обсуждение этого вопроса требует детального обсуждения физики процесса с соответствующими выкладками.

Третья причина связана собственно с измерениями магнитных полей. К сожалению, измерить напрямую магнитные поля столь далеких объектов довольно трудно. Массово их измеряют лишь косвенно. Чем сильнее магнитное поле, тем быстрее нейтронная звезда (не взаимодействующая с веществом вокруг) замедляет свое вращение. И по вот этому торможению вращения нейтронных звезд можно оценивать поля. Для радиопульсаров, например, это достаточно хорошо работает. Если такую же методику применить для источников мягких повторяющихся гамма‑всплесков или для аномальных рентгеновских пульсаров, окажется, что поля у них в сотни раз больше, чем у обычных радиопульсаров. То есть при тех же периодах они замедляются в десятки тысяч раз эффективнее: произведение периода вращения на его производную (т. е. на темп замедления) пропорционально квадрату дипольного магнитного поля на поверхности нейтронной звезды.

Есть и другие причины думать, что магнитные поля магнитаров велики. Можно оценить запас энергии, необходимой для поддержания вспышечной активности в течение десятков тысяч лет. Необходимая величина соответствует запасам энергии магнитного поля, если оно велико. Для возникновения пульсирующего хвоста после гигантской вспышки нужно удерживать вещество от разлета – это может сделать сильное магнитное поле. Наконец, спектры магнитаров тоже свидетельствуют в пользу сильных полей.

Красивый результат был получен на рентгеновском спутнике ИНТЕГРАЛ, вначале Сергеем Мольковым с соавторами, а затем и другими группами наблюдателей. До этих наблюдений никто не мог получить спектры магнитаров на энергиях существенно больших 10 кэВ, т. е. за стандартным рентгеновским диапазоном. Экстраполяция спектров (и, соответственно, теоретических моделей) в область энергий жесткого рентгеновского диапазона предсказывала, что источники будут слабыми – спектры спадают в области жесткого рентгена. Оказалось, что это не так. Несколько аномальных рентгеновских пульсаров и источников мягких повторяющихся гамма‑всплесков продемонстрировали мощное излучение в жестком рентгеновском диапазоне. Появились разные модели, объясняющие эти данные. Но самые успешные из них требуют присутствия сильного магнитного поля.

Таким образом, сформировалась первая концепция современных магнитаров: это нейтронные звезды с большими (и в смысле величины, и в смысле пространственной протяженности) магнитными полями. Они довольно редкие – известных магнитаров примерно в сто раз меньше, чем радиопульсаров. Но, дело в том, что они просто очень недолго живут – стадия активного магнитара длится в десятки раз меньше стадии радиопульсара. Они очень быстро замедляются, теряют свою энергию и перестают быть хорошо видимыми объектами. Полагали, что несколько процентов (может быть, до 10 %) всех нейтронных звезд в молодости могут быть вот такими магнитарами.

Уже в тот момент, когда появилась первая магнитарная концепция, встал вопрос, откуда берутся эти сильные магнитные поля. Поскольку если все‑таки нормой являются обычные радиопульсары, то нужно придумать механизм, как усилить поля еще на два порядка. Такой сценарий был предложен уже в первых работах Томсона, Дункана и их соавторов. Он основан на работе динамо‑механизма.

Наглядно идея выглядит так. Мы все представляем себе магнитные поля как силовые линии, как некие «шнуры», торчащие из магнита. Любой шнур можно перекрутить и сложить. Тогда в нашей области шнур будет упакован плотнее. То же самое с магнитным полем – оно станет в два раза сильнее, если вы проделаете такую штуку с силовыми линиями. Для этого нужно, чтобы поле было хорошо связано с веществом, а вещество совершало трехмерное движение. В случае магнитаров это возможно, когда нейтронная звезда, во‑первых, очень быстро вращается, а во‑вторых, она еще жидкая, и в ней возможна конвекция. Тогда конвекция и вращение в протонейтронной звезде могут приводить к тому, что магнитные поля будут усиливаться динамо‑механизмом. Это хорошая идея, но она сталкивается с очень большой проблемой – трудно объяснить, почему же нейтронные звезды столь быстро вращаются вначале. Необходимо вращение в десятки раз быстрее, чем в среднем бывает при рождении у обычных пульсаров. Что же может заставить новорожденную нейтронную звезду так быстро вращаться?

Ее вращение, конечно же, связано с тем, как вращалась звезда‑прародитель. И есть способ дополнительно раскрутить обычную звезду. Это возможно, если она входит в двойную систему. Тогда взаимодействие со звездой‑соседкой может привести к тому, что звезда‑прародитель магнитара будет вращаться в несколько раз быстрее, чем ей положено, и потом может возникнуть быстровращающаяся нейтронная звезда, которая сможет усилить свое магнитное поле и превратиться в магнитар. Пока, к сожалению, непонятно, работает этот механизм, или нет, но по крайней мере есть хорошая такая логическая цепочка, которая приводит к образованию нейтронных звезд с очень сильными магнитными полями как раз примерно в 10 % случаев. И есть наблюдения, которые говорят, что по крайней мере в некоторых случаях магнитары родились из звезд, которые на одной из стадий своей эволюции дополнительно раскрутились в двойных системах.

 








Дата добавления: 2016-01-29; просмотров: 1043;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.