Оборудование для герметизации

Герметизация бывает корпусная и бескорпусная. Корпуса считаются герметичными при натекании гелия менее 1,32∙10-9 м3∙Па/с . Герметизация корпусов осуществляется сваркой, пайкой, склеиванием, завальцовкой, заваркой стеклом.

Сварка бывает холодной, контактной и сваркой плавлением (аргонно-дуговая, микроплазменная, электронно-лучевая, лазерная).

Холодная сварка применяется для металлов корпусов и крышек Al, Cu, ковара. Относительная деформация при сварке составляет 60-80%, давление- 0,17-2,5∙109 Па.

Контактная (электроконтактная сварка) включает в себя сварку по контуру и шовную (роликовую).

Контактной сваркой называется процесс получения разъемного соединения материалов путем нагрева для до пластического или расплавленного состояния с последующим сжатием (осадкой).

 

 

Рисунок 15.1 – Схема контактной сварки

1- корпус; 2-электроды; 3-сварочный трансформатор; 4-батарея конденсаторов; 5-выпрямитель

 

Ток во вторичной цепи зависит от емкости батареи конденсаторов (C= 800-1200 мкФ на 1 мм периметра), от коэффициента полезного действия (кпд = 0,65) и от напряжения во вторичной обмотке трансформатора. Давление на свариваемый контур составляет 12-18 кгс/мм2

Электроды бывают комбинированные и некомбинированные. Основание комбинированного электрода выполнят из меди марок М1, М2 ,а рабочую часть наконечника из сплава эльконаит ВМ (20-30%Cu,70-80%W). Наконечник припаивается серебряным припоем. Некомбинированные электроды изготавливаются из бронзы БрБ2, сплавов на основе Cu, Be, Ti.

Схема роликовой сварки представлена на рис.15.2

 

Рисунок 15.2 –Схема роликовой сварки

 

Сварка плавлением заключается в формировании сварного шва за счет высокой температуры в зоне герметизации. На рис.15.3 представлен вид сварного шва и схема аргонно-дуговой сварки.

 

 


 

 

Рисунок 15.3 – Схема аргонно-дуговой сварки и вид сварного шва

 

Размер дуги составляет обычно 0.6-0.7 мм, скорость сварки достигает 10- 55 см/мин.

На рис. 14.4 изображена другая разновидность аргонно-дуговой сварки для герметизации корпусов микросхем, в которой для предотвращения окисления сварного шва применяется обдув последнего струей защитного газа (обычно аргон), а также наличие теплоотвода.

 

Рисунок 15.4 – Схема аргонно-дуговой сварки с защитой сварного шва от окисления

1 – электрод; 2 – плазмообразующий газ; 3 – корпус; 4 – защитный газ; 5 – теплоотвод; 6 – герметизируемый корпус

 

Герметизация электронно-лучевойсваркой обладает следующими преимуществами:

-точное управление и регулирование тепловой энергии;

-локальный нагрев;

-высокая чистота процесса (вакуум).

Установка электронно-лучевой сварки (рис.15.5) включает катодный узел 4, фокусирующую линзу 6, анод 5 с отверстием. Расстояние между анодом и катодом составляет 10-15 см. На катод подается отрицательный потенциал 20-200 кВ.

Сварные швы, полученные данным способом, имеют мелкочешуйчатую поверхность по всей длине, дефектом швов могут быть непровары, смещения линии стыка кромок относительно оси.

Герметизацию электронно-лучевой сваркой можно осуществлять в непрерывном и импульсном режимах, но предпочтительнее в импульсном, т.к. возможна герметизация с малой зоной термического влияния.

Основными параметрами процесса являются ускоряющее напряжение, диаметр электронного луча, скорость сварки, длительность и частота следования импульсов. Суммарная толщина отбортовки корпуса под сварку должна быть 0,4-0,8 мм, глубина проплавления – 0,5-0,8 мм, степень перекрытия сварных точек – 50-60% от из диаметра.

Главный недостаток установки – сложность конструкции.

 

 


 

 


Рисунок 15.5 – Устройство установки электронно-лучевой герметизации

1 – высоковольтный трансформатор; 2 – выпрямитель; 3 – электронная пушка; 4 – катод; 5 – анод; 6 – электромагнитная фокусирующая линза; 7 – отклоняющая система; 8 – корпус полупроводникового прибора; 9 – ходовой винт; 10, 11 – форвакуумный и диффузионный насосы; 12 – электродвигатель привода столика; 13 – столик; 14 – рабочая камера; 15 – электронный пучок

Устройство для герметизации лазерной сваркой имеет перед электронно-лучевой сваркой следующие преимущества:

-возможность концентрации сравнительно больших энергий на малых площадях, т.е. высокая локальность процесса;

-легкость фокусирования обычной оптикой;

-отсутствие специальных сред (вакуум);

-возможность соединения разнородных, разнотолщинных, тугоплавких и материалов, обладающих высокой теплопроводностью

-слабый нагрев близко расположенных от места сварки участков

-отсутствие деформации деталей корпуса.

Недостатками лазерной герметизации является потеря энергии при сварке металлов, обладающих высоким коэффициентом отражения, например, для никеля Котр. = 0,68 при λ=0,7 мкм). Для уменьшения отражения применяют увеличение шероховатости поверхности, покрытие свариваемых металлов пленками с низким коэффциентом отражения, а также использованием т.н. "светоловушек", в качестве которых могут использоваться треугольные щели.

Схема специализированной полуавтоматической двулучевой установки Квант-17 показана на рис.15.6. Она предназ­начена для герметизации одновременной сваркой с двух сторон корпусов микросхем размерами от 10 до 40 мм. Для этого в установке имеются два активных элемента 6, которые расположены соосно и помещены в отдельные камеры с импульсными лампами накачки 7, подключенными к общему источнику питания 8 последовательно для обеспечения оди­наковых излучений, и резонатор, состоящий из двух сфери­ческих зеркал 5. С помощью призм / полного внутреннего сражения и объективов 2 лазерные лучи с двух сторон направляются на сварочные кромки корпуса 4 микросхемы и фокусируются на них.

Для укладки герметизируемых микросхем служит много­местная кассета 3, которая после сварки двух параллельных сторон корпуса автоматически перемещается с заданной ско­ростью и поворачивается на 90° для герметизации двух других сторон.

 

Рисунок 15.6 – Схема полуавтоматической двухлучевой установки Квант-17

1-призма полного отражения; 2-объектив; 3 - кассета; 4-корпус микросхемы, 5-сферическое зеркало; 6-активный элемент, 7-лампа накачки; 8-источник питания.

Герметизация пайкой осуществляется в конвейерных печах и струей горячего газа на специальных установках. Преимущество такой герметизации заключается в отсутствии значительных давлений и специального инструмента, а недостатком является нагрев до температуры 200-350ОC, наличие флюса, необходимость работы в атмосфере водорода или инертного газа, критичность режимов сварки. Используются закладные детали из припоя, кассеты изготавливаются из графита и нержавеющей стали.

 

 

 

Рисунок 15.7 – Схема герметизации цельностеклянного корпуса радиационной заваркой стеклом

1 – нагревательная спираль; 2 – держатель с контактной пружиной; 3 – трубка с выводом и кристаллом

Сущность способа герметизации заваркой стеклом заключается в создании монолитной герметичной конструкции за счет соединения с собой стеклянных узлов (стекла со стеклом) или стеклянных узлов с металлическими (спай стекла с металлом). Схема изготовления данной конструкции выпрямительного диода, загерметизированной заваркой стеклом, показана на рис. 15.7.

В полупроводниковой промышленности герметизация стеклом осуществляется в основном радиационным нагревом и реже нагревом пламенем. Способ радиационного нагрева широко применяют из-за хорошей воспроизводимости технологического процесса и возможности получения стабильных режимов заварки.

Герметизацию ИС пластмассой выполняют несколькими ме­тодами, основными .из которых являются: заливка в съемные формы и корпус, окунание и обволакивание, литьевое (трансфертное) и компрессионное прессование. Заливку в съемные формы (свободную заливку) применяют преимущественно при групповой технологии изготовления ИС. При этом методе в открытую часть формы, предварительно загруженной металлической арматурой и кристаллами ИС, за­ливают пластмассу (компаунд) и нагревают ее для полимери­зации. Герметизированные приборы извлекают из формы, ко­торую снова используют для заливки.

Заливка в корпусе отличается от заливки в съемные формы тем, что заливочной формой в этом случае является часть гер­метизируемого корпуса. Окунание и обволакивание применяют для дополнительной герметизации приборов или в качестве основного метода герметизации бескорпусных приборов.

При литьевом прессовании — наиболее распространенном ме­тоде пластмассовой герметизации — используют как термопла­стичные, так и термореактивные пластмассы. Сущность этого метода состоит в том, что дозированную пластмассовую таб­летку (или порошок) расплавляют до заливки вне литьевой формы, а заливка происходит при дополнительном повышении жидкотекучести пластмассы и незначительном увеличении дав­ления.

Непосредственно перед герметизацией перфоленту определен­ной формы и длины со смонтированными ИС укладывают, фикси­руя по перфорации, в пресс-формы, которые закрывают, и про­изводят прессование. В процесс прессования — заливки пресс – формы — входят следующие операции загрузка пер­фоленты и смыкание литьевой формы (а), загрузка пластмас­совой таблетки (б), ввод пуансона (трансфера) в литьевую форму (в), расплавление пластмассы под высоким давлением (г), заливка формы пластмассой под низким давлением и выдерж­ка (д), размыкание литьевой формы и съем изделия (е).

Компрессионное прессование менее распространено, чем литье­вое. Сущность этого метода со­стоит в том, что плавление гер­метизирующего материала и заливка им ИС осуществляется в пресс-форме и с частичной по­лимеризацией. Пресс-форма для компрессионного прессования имеет обогрев верхней и нижней частей (матрицы и пуансона). В нижнюю часть помещают таб­летку пластмассы, на нее —ме­таллическую арматуру гермети­зируемых ИС, а затем — вторую таблетку пластмассы. Далее обе части формы соединяют. При на­гревании и под действием дав­ления пластмасса переходит в пластичное состояние, заполняет все полости рабочего объема пресс-формы и полимеризуется. После этого пресс-форма раскрывается и из нее выталкивают­ся загерметизированные приборы. Для герметизации ИС пластмассой используется следующий комплект оборудования: пресс для литьевого или компресси­онного прессования, машина для изготовления таблеток из пласт­массы, подогреватель для таблеток, пресс-формы и пресс со штампом для отделения загерметизированных ИС друг от друга.

Установка УГП-50 для герметиза­ции ИС пластмассой оборудована электрическими подо­гревателями верхней и нижней частей пресс-формы. Удаление загерметизированных ИС производится верхними и нижними эжекторными толкателями. Для зажима пресс-формы служит установленная в рабочем пространстве пресса гидравлическая система. При зажиме и освобождении (разъеме) пресс-формы зажимное устройство действует с различными регулируемыми скоростями: при закрытии пресс-формы оно быстро закрывается, при освобождении вначале открывается медленно (в этот момент происходит выталкивание залитых пластмассой ИС), а затем скорость увеличивается, причем эту скорость можно регулиро­вать. Зажимное устройство имеет предохранительное приспособление для пресс-формы на случай, если перфолента будет уло­жена неправильно. Таким образом, вероятность повреждения пресс-формы в прессах сведена к минимуму. Конструкцией прес­са предусмотрена также регулировка высоты рабочего простран­ства для закрытых пресс-форм различной высоты.

Для герметизации ИС применяют одно- и многоместные съемные и стационарные пресс-формы. Качество герметизации ИС в большой степени зависит от конструкции и качества изго­товления пресс-формы.

Испытания на герметичность проводят в два этапа.

На первом этапе отбраковываются приборы с натекаемостью менее 10-8 м3·Па/с. К этим методам относятся масс-спектроскопический, галогенный, радиоактивный. На втором этапе выявляются грубые течи Они обнаруживаются, например, по образованию пузырьков при погружению изделия в жидкость.

 

 

Рисунок 15.8 - Установка контроля герметичности электронно–захватным методом

1 – рабочая камера, 2 – крышка, 3 – изделие, 4 – уплотнитель, 5 – электронно–захватный детектор, 6 – измерительный блок, 7 – сигнализатор брака, 8 – регулятор расхода газа, 9 – контрольный манометр, 10 – диски золотника


 

Рисунок 15.9 - Установка контроля герметичности диффузионно - магниторазрядным методом

1 – устройство разбраковки малых течей, 2 – зона накопления гелия, 3 – устройство разбраковки больших течей, 4 – устройство дополнительной опрессовки, 5 – форвакуумный насос

 

 








Дата добавления: 2016-01-29; просмотров: 2296;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.