Река, которую мы знаем

 

Глава XVI

Течение Реки

 

Первозданное море попросту окружало каждую отдельную клетку, питая и омывая ее, создавая условия, в которых она могла существовать. Крови гораздо труднее выполнять свои функции.

Внутри невообразимо запутанного лабиринта, каким является человеческий организм, кровь должна добираться до каждой из сотен триллионов клеток, снабжать их продуктами питания и очищать от отходов. Кровь поступает к клеткам по капиллярам, пронизывающим все ткани тела. Основная цель кровообращения и состоит в том, чтобы обеспечить поступление крови в капилляры, где она получает возможность осуществлять свои основные функции. Сердце, артерии, вены и прочие структурные элементы и сложные системы контроля в первую очередь предназначены для достижения этой цели.

Все каналы кровообращения никогда не заполняются одновременно – для этого в организме просто не хватило бы крови. Одни только мельчайшие капилляры способны вместить количество крови, превышающее ее общий запас в человеческом теле, равный примерно 7 литрам.

Потребности организма вызывают к жизни столь неповторимо величественный процесс, что даже сложнейшие пассажи в фугах Баха выглядят рядом с ним элементарными гаммами.

Строго контролируемая вазомоторными, или сосудодвигательными, центрами – этими нервными приборами, расположенными в низшем отделе головного мозга, так называемом продолговатом мозге, – кровь направляется именно к тем капиллярам, которые в ней нуждаются. Движению крови помогают сигнальные посты, расположенные вдоль ее пути и в других частях организма, а также стимулирующие и тормозящие гормоны и прочие химические вещества. Принцип действия всего механизма предельно прост: кровь распределяется в соответствии с объемом выполняемой работы. Ткани, на которые падает основная нагрузка, получают больший объем крови для возмещения их энергетических затрат и удаления отходов. Ткани, находящиеся в состоянии покоя, получают ровно столько крови, сколько необходимо для их нормальной жизнедеятельности.

Во время сна работа организма сводится к минимуму, и большинство кровеносных сосудов спадается. Но стоит только случайно соскользнуть одеялу и тело спящего человека начнет охлаждаться, как капилляры кожи мгновенно получают аварийную порцию согревающей крови. При болезнях или травмах пораженные ткани также требуют и получают значительное количество крови.

Пожалуй, важнейшим видом деятельности организма является процесс пищеварения. Поэтому кровь в первую очередь обслуживает пищеварительные органы, а затем уже другие виды жизнедеятельности: мышечную работу и даже самую сложную работу головного мозга. После принятия пищи большая часть крови подается в пищеварительный тракт. Для удовлетворения этой повышенной потребности в крови мозг, а также все прочие ткани и мышцы переводятся на жесткий рацион. Именно поэтому после еды человек часто чувствует сонливость и известную вялость мысли. По этой же причине напряженная физическая работа сразу же после еды может быстро утомить мышцы и вызвать судороги. Вот почему никогда не следует заниматься плаванием непосредственно после приема пищи.

Своеобразными регулировщиками кровообращения служат многочисленные устройства, находящиеся у входов в сосуды и напоминающие шлюзы. Даже устья мельчайших капилляров снабжены микроскопическими мышечными волокнами, которые сокращаются и закрывают доступ крови, если в ней нет нужды, или расслабляются и открывают дорогу крови, как только в ней появляется потребность. По всей кровеносной системе протяженностью свыше 95 тысяч километров непрерывно открывается и закрывается колоссальное количество крошечных шлюзов, посылающих кровь то в одном, то в другом направлении. При этом число возможных комбинаций столь велико, что на протяжении всей жизни ни одна из них не повторяется.

Распоряжения, адресуемые кровеносной системе, передаются необычайно сложным путем, который до сих пор человеком до конца не изучен. Несомненно, важную роль в этом процессе играют химические факторы, а также электрические импульсы, возникающие при химических изменениях в тканях организма. Ученые предполагают, что, как только запас углекислоты в клетках превышает определенный уровень, срабатывает целая серия биохимических сигнальных реле и с их помощью запирательные мышцы у входа в капилляр, питающий эти клетки, расслабляются. В тот же момент через нервные пути к вазомоторному центру в мозг посылаются мгновенные импульсы, которые сигнализируют о потребности в крови на каком‑то определенном участке. В ответ по другим нервным стволам артериальные мышцы немедленно получают приказ открыть или закрыть вход в сосуды с тем, чтобы обеспечить необходимым количеством крови нуждающийся участок.

Даже те довольно скудные сведения об этих механизмах, которыми мы располагаем, позволяют утверждать, что течение крови не является случайным перемещением жизненно важной жидкости по неизменному курсу. В отличие от обычных рек с их открытым бассейном, имеющим начало в одном пункте и конец – в другом, Река жизни постоянно возвращается от устья к истоку, образуя замкнутый круг. Все ее русло, притоки и механизмы, направляющие ее течение, объединяются в сердечно‑сосудистую систему. Эта система состоит из сокращающегося сердца, которое выбрасывает кровь в сосуды, артерий с их мелкими разветвлениями – артериолами, разносящих кровь по периферии организма, капилляров, в которых кровь выполняет поставленную перед ней природой задачу, и, наконец, венул и более крупных вен, возвращающих кровь обратно в сердце.

И хотя различные сосуды, несущие кровь, отличаются друг от друга, все они имеют одну общую черту. Внутренняя поверхность всех сосудов и сердца, т. е. всего русла, по которому течет кровь, покрыта слоем чрезвычайно тонких клеток, пригнанных друг к другу, как брусчатка на вымощенной мостовой. Эти клетки называются эндотелиальными , они формируют эндотелий , или эндотелиальную систему . Эндотелиальные клетки настолько тонки, что высота десяти тысяч клеток, положенных друг на друга, не достигает и трех сантиметров.

 

 

Рис. 23. Схема кровообращения.

Справа на схеме показан переход крови из артерий (светлые линии) по капиллярам в вены (более темные линии).

 

Артерии, которые разносят кровь по организму, представляют собой плотные, эластичные трубки, содержащие большое количество мышечных и нервных волокон. Стенки артерий состоят из трех слоев. Внутренний слой образуется из тонкого покрова эндотелиальных клеток. Средний слой, который гораздо толще эндотелия, составляют гладкие мышцы и волокна эластичной соединительной ткани. Внешний слой формируется из рыхлой соединительной ткани, пронизанной мелкими сосудами для питания стенок артерий и нервными волокнами для передачи приказов и для контроля над артериальными мышцами.

В среднем слое стенки крупных артерий, например аорты, которая принимает весь объем крови, выбрасываемой сердцем, эластичной ткани больше, чем мышечной. Это придает им большую упругость, что в свою очередь позволяет справиться с могучей струей крови, выталкиваемой сердцем. По мере разветвления артерий калибр их быстро уменьшается, а содержание мышечной ткани в них возрастает. Артериолы – мельчайшие сосуды артериальной системы – почти целиком состоят из мышц, в их среднем слое почти нет эластичной ткани. Мышечная ткань артериол, играющая роль крошечных кранов, пропускающих кровь в капилляры, обеспечивает их сокращение и расслабление, прекращая кровоток или изменяя его направление в соответствии с запросами организма.

Наиболее обширным отделом сердечно‑сосудистой системы является капиллярная сеть, состоящая из тончайших и наиболее хрупких сосудов. Стенки капилляров состоят из одного слоя эндотелиальных клеток, толщина которых не превышает 0,0025 мм . Через мельчайшие пространства между этими клетками кровь передает тканям необходимые вещества и забирает отходы, а также другие биохимические продукты. В устьях капилляров, там, где они соединяются с артериями с помощью своеобразных промежуточных каналов, имеются тонкие мышечные кольца, называемые сфинктерами. Расслабляясь или сжимаясь, сфинктеры то открывают, то закрывают доступ крови в каждый капилляр.

 

 

Рис. 24. Схема строения и работы сердца.

1 – правое легкое; 2 – голова и руки; 3 – левое легкое; 4 – легочная вена; 5 – аорта, ко всем частям организма; 6 – легочная артерия; 7 – легочная вена; 8 – предсердие; 9 – митральный клапан; 10 – клапаны аорты; 11 – предсердие; 12 – клапаны легочной артерии; 13 – левый желудочек; 14 – трехстворчатый клапан; 15 – правый желудочек; 16 – внутренняя оболочка сердца (эндокард); 17 – сердечная мышца (миокард); 18 – туловище и ноги; 19 – из организма кровь поступает в правую половину сердца, откуда по легочной артерии попадает в легкие и обогащается кислородом; 20 – обогащенная кислородом кровь поступает из легких в левую половику сердца, откуда через аорту растекается к различным частям организма; 21 – околосердечная сумка (перикард).

 

На другом конце капиллярной сети начинается венозная система. Ее начальные мельчайшие сосуды – венулы – переходят в сосуды более значительных размеров, которые в конце концов впадают в полые вены – два крупных венозных ствола, по которым кровь возвращается в сердце.

По своему строению вены почти не отличаются от артерий, однако их стенки тоньше, а просвет – шире. Поскольку венам в отличие от артерий не нужно сокращаться, в их среднем слое содержится меньшее количество мышечной ткани. Если в артериях кровь движется под давлением, создаваемым сокращениями сердца, то вены снабжены клапанами, позволяющими крови течь только в одном направлении – к сердцу.

Таково в самых общих чертах строение кровеносных сосудов, каждый из которых предназначен для максимально эффективного выполнения функций, установленных самым беспристрастным судьей – естественным отбором.

Не менее уникальным устройством, чем кровеносные сосуды, является сердце, которое можно назвать самой удивительной и самой эффективной машиной. Сердце – этот насос двойного действия, работающий на основе попеременного сокращения и расслабления мощных мышечных слоев, – посылает в кровеносную систему около 6 литров крови каждую минуту, или свыше 8 тысяч литров в сутки.

В течение жизни – а средняя продолжительность жизни человека достигает семидесяти лет, – сердце перекачивает почти 175 миллионов литров крови! При ритме, равном 72 ударам в минуту, оно совершает за все это время свыше двух с половиной миллиардов сокращений. И на протяжении этого неслыханного по своей продолжительности эксплуатационного периода сердце, которое «отдыхает» только в короткие промежутки между двумя сокращениями, лишено возможности производить ремонт, «модернизацию» или замену частей, без чего не обходится ни один механический насос. Более того, оно продолжает работу, исправляя повреждения и производя замену изношенных тканей на ходу, в процессе непрерывной деятельности.

И хотя вес этого чудесного насоса немногим больше 300 граммов, по своей эффективности он оставляет далеко позади любые созданные человеком машины, использующие химическое топливо. Так, например, паровая турбина способна превратить непосредственно в энергию около 25 % расходуемого ею топлива. Производительность сердца вдвое эффективнее: оно превращает в энергию половину поступающих в него питательных веществ и кислорода.

Помимо способности выполнять огромный объем работы в течение длительного периода, сердце обладает еще одним удивительным свойством: оно является саморегулируемым устройством, которое приспосабливает свою деятельность к потребностям обслуживаемого им организма. В обычных условиях сердце выбрасывает в среднем около 6 литров крови в минуту. Однако при сильных нагрузках на организм, например во время бега на сто метров с предельной скоростью, сердце может довести количество нагнетаемой крови до 10 литров в минуту.

Что касается строения человеческого сердца, то оно представляет собой полый мышечный орган, разделенный изнутри мышечной стенкой – так называемой перегородкой – на два насоса – правую и левую половины. Каждый насос состоит из двух камер. В верхнюю камеру – предсердие – поступает из организма кровь. Нижняя камера – желудочек – выталкивает кровь в сосуды. Между обеими камерами расположен клапан, позволяющий крови течь только в одном направлении – из предсердия в желудочек. Клапан между правым предсердием и желудочком называется трехстворчатым, клапан левой половины сердца – митральным. Правая и левая половины сердца полностью отделены друг от друга, и находящаяся в них кровь не может смешиваться.

Сердце выполняет свою функцию насоса посредством ритмических сокращений и расслаблений. Сокращение, называемое систолой , начинается в верхней части сердца и распространяется вниз, подобно волне, буквально выдавливая кровь из предсердия в желудочек и из желудочка в артерии. За систолой следует волна расслабления диастола , во время которой сердце расширяется, тем самым давая возможность крови поступить из вен в предсердия и далее через клапаны в желудочки. Затем наступает очередное сокращение сердца.

Кровь, перекачиваемая через сердце, не питает его. Питание сердца осуществляется с помощью коронарных (венечных) артерий – небольших сосудов, лежащих на его поверхности, – и их разветвлений.

И здесь мы вплотную подходим к одной любопытной загадке, которая до сих пор остается нераскрытой, несмотря на весь багаж наших знании, наличие современного оборудования, новейшей техники эксперимента и различных, подчас очень тонких теорий.

Мы не знаем, чтó вызывает биение сердца.

Как известно, большинство насосов приводится в действие моторами. Однако нам не удалось обнаружить мотор, который заставляет сокращаться сердце. Долгое время считали, что поскольку сердце является мышцей, богатой нервами, то именно эти нервы и обеспечивают его сокращение, подобно тому как они вызывают сокращение всех других мышц. Но если при перерезке соответствующих нервов все прочие мышцы парализуются, то сердечная мышца и в этом случае продолжает сокращаться. Более того, сердце, удаленное из тела и помещенное в питательный раствор, одно, без мозга, без крови, без нервов, все равно продолжает ритмично пульсировать.

Можно, пожалуй, сделать только один вывод: сила, стимулирующая деятельность сердца, находится в нем самом; она исходит из заключенного в нем механизма, который по своей важности и примитивности строения схож с первыми формами жизни, обладавшими рефлексами, но еще лишенными сознания.

Исследуя это удивительное явление, ученые пытались установить местонахождение данного гипотетического механизма и определить его природу. Наблюдения над сердцем лягушки показали, что волны сокращения возникают вблизи полой вены в верхней части правой половины сердца и направляются книзу, закономерно охватывая сначала предсердие, а затем желудочек.

При изучении куриного эмбриона ученые обнаружили маленький участок недифференцированной ткани в том месте, где впоследствии появляется сердце. Этот участок задолго до превращения в сердце уже отличался ритмичной пульсацией. В эмбрионе человека такое примитивное сердце начинает биться уже через три недели после зачатия, то есть за две недели до появления первых элементов нервной системы.

Наконец, в 1907 году двум английским врачам, Артуру Кису и Мартину Флеку, удалось несколько приподнять край завесы, скрывающей причины сердечных сокращений. В правом предсердии, недалеко от места впадения верхней полой вены, которая приносит кровь из головы и верхней части тела, они обнаружили маленький узелок, простирающийся книзу примерно на 2 сантиметра. Этот узелок резко выделялся на фоне окружавшей его сердечной мышцы. Он представлял собой мелкую сеть простейших мышечных клеток и нервных волокон, окруженную соединительной тканью и связанную только с прилегающей мышцей. Особый сосуд обеспечивал его кровью.

В результате каких‑то внутренних процессов, суть которых нам до сих пор неясна, этот странный кусочек ткани, получивший название сино‑аурикулярного узла , через определенные промежутки времени претерпевает химические изменения. При этом по прилегающей сердечной мышце каждый раз пробегает волна сокращения. Она служит своего рода «запальной свечой», или водителем ритма сердечных сокращений. Одновременно с каждым импульсом, сокращающим сердце, в сино‑аурикулярном узле происходит небольшой электрический разряд.

Ученым предстоит выяснить, не являются ли сократительный импульс и электрический разряд, который его сопровождает, в сущности, одним и тем же явлением. Но мы уже знаем, что импульс и разряд всегда появляются вместе и что сердечная мышца сокращается, – когда через нее пропускают электрический ток.

Очевидно, однако, что сино‑аурикулярный узел выполняет не всю работу по стимуляции сердечных сокращений. В нижней части правого предсердия, вблизи мышечной части перегородки, ученые обнаружили еще один участок такой же ткани, названный атрио‑вентрикулярным узлом . От него отходят две ветви к обоим желудочкам, где они образуют сложную сеть.

Этот второй узел с его разветвленной сетью коммуникаций служит своеобразной передаточной станцией для импульса, возникающего в сино‑аурикулярном узле. Как только этот импульс достигает атрио‑вентрикулярного узла, он по сети нервных волокон распространяется на мышечные волокна обоих желудочков, вызывая их сокращение.

Открытие сино‑аурикулярного и атрио‑вентрикулярного узлов доказывает существование внутри сердца своеобразного нервно‑мышечного генератора электрической энергии, приводящегося в действие таинственным механизмом, независимым от остального организма. Со временем ученые, обогащенные новыми знаниями и новейшей техникой экспериментирования, бесспорно, смогут разгадать тайну сино‑аурикулярного узла и понять процессы, которые помогают ему обеспечивать непрерывную пульсацию сердца.

Интересно, к какому выводу пришли бы метафизики, будь им в свое время известен этот таинственный кусочек зачаточной ткани? Скорее всего, они усмотрели бы в нем квинтэссенцию жизни или пристанище души.

Хотя сино‑аурикулярный узел стимулирует сокращения сердца с постоянной частотой, их ритм не отличается достоинством. В зависимости от эмоциональных, физических и других влияющих на организм факторов ритм сердечных сокращений может замедляться или ускоряться. Происходит это под непосредственным воздействием автономной, или вегетативной, нервной системы с центром в продолговатом мозге, расположенном в низшем отделе головного мозга. Это тот же центр, который с помощью других нервов направляет поток крови к нуждающимся в ней частям организма.

В регуляции частоты пульса участвуют два вида нервов. Парасимпатические волокна блуждающего нерва выполняют тормозящую функцию – они уменьшают силу сердечного сокращения и препятствуют излишнему ускорению ритма. Симпатические (ускоряющие) нервные волокна увеличивают силу и частоту сердечных сокращений, что может понадобиться при напряжениях, волнениях или тяжелой работе.

И те, и другие нервные волокна постоянно находятся в действии, деля между собой сложную задачу контроля над работой сердца. Если организм оказывается в состоянии напряжения, требующего срочного увеличения кровотока, симпатические нервы усиливают свою активность, выделяя адреналин – гормоноподобное химическое вещество. Адреналин действует, как могучий стимулятор сердечной деятельности. При спаде напряжения потребность в крови возвращается к норме. В этот момент активизируются волокна блуждающего нерва, которые выделяют химическое вещество, расслабляющее и замедляющее сокращения сердца. Это вещество – ацетилхолин – напоминает яд, встречающийся в ядовитых грибах.

Частота пульса, обычно у человека равная 72 ударам в минуту, обратно пропорциональна размеру живых существ. Так, у ребенка сердце бьется вдвое быстрее, чем у взрослого. Сердце слона сокращается примерно 25 раз в минуту, а канарейки – 1000 раз и более.

Итак, представив себе картину работы сердца и сосудов, формирующих сердечно‑сосудистую систему, проследим за течением Реки жизни по ее руслу внутри организма.

Как известно, кровь является сложной транспортной средой, переносящей к клеткам и тканям организма кислород, питательные и защитные вещества, гормоны и другие важные продукты и удаляющей оттуда углекислоту, мочевину и прочие отходы жизненных процессов.

Темная венозная кровь, бедная кислородом и насыщенная углекислым газом, поступает в правое предсердие по двум крупным венам. Это – нижняя полая вена, принимающая кровь из ног и нижней половины тела, и верхняя полая вена, по которой кровь возвращается из головы и верхней половины тела.

В момент диастолы сердце расширяется, и кровь попадает из этих вен в правое предсердие, а затем через открытый трехстворчатый клапан устремляется в правый желудочек. В момент, когда сино‑аурикулярный узел посылает сократительный импульс, систолическая волна выжимает остатки крови из предсердия через клапан в желудочек. Волна сокращения распространяется вниз по желудочку, закрывая трехстворчатый клапан, открывая клапан легочной артерии и направляя в нее кровь.

По разветвлениям этой артерии, которая наряду с аортой является крупнейшей в организме, все еще темная венозная кровь устремляется в легкие. Там она попадает в сеть капилляров, окружающих примерно 700 миллионов наполненных воздухом пузырьков – альвеол . Здесь через стенки капилляров кровь отдает углекислоту и получает новую порцию кислорода. И сейчас же темно‑красный цвет венозной крови уступает место ярким оттенкам артериальной крови.

Насыщенная кислородом кровь из капилляров поступает в венулы, а оттуда в легочные вены, по которым она попадает в сердце через левое предсердие.

Проходя по системе легочного кровообращения, впервые описанной Мигелем Серветом и Реальдо Коломбо, кровь не выполняет каких‑либо определенных функций в организме. Однако груз кислорода, который движется вместе с ней, напоминает о предстоящей жизненно важной работе в большом круге кровообращения.

Здесь следует остановиться на весьма странной аномалии. Как известно, во всех частях тела артерии несут яркую, насыщенную кислородом кровь, а вены – темную кровь с большим содержанием углекислоты. Исключение составляет система легочного кровообращения. По легочной артерии к легким течет темная кровь, а по легочным венам к сердцу – яркая и насыщенная кислородом. Это обстоятельство, несомненно, служило постоянным камнем преткновения для первых анатомов, пытавшихся выяснить различие между артериями и венами. Как мы знаем, много воды утекло, прежде чем удалось установить, что артерии – это сосуды, несущие кровь от сердца, а вены – сосуды, возвращающие кровь в сердце.

Когда сердце в диастоле расслабляется, насыщенная кислородом кровь проникает через левое предсердие в мощный левый желудочек. Затем, когда сердце под воздействием импульса, посланного из сино‑аурикулярного узла, сокращается, митральный клапан закрывается, а аортальный открывается, и кровь с силой выбрасывается в широкую, выгнутую дугой аорту – главный артериальный ствол большого круга кровообращения.

В аорту кровь поступает под большим давлением, которое обеспечивает ее продвижение по всем ветвям артериального дерева вплоть до капилляров. В артериях давление сохраняется постоянно. Оно достигает максимальной величины в момент сокращения сердца, в систоле, а при расслаблении сердца, т. е. в диастоле, падает. Верхний и нижний уровни кровяного давления легко измерить. Врачам эта процедура позволяет определять состояние сердца и кровеносной системы больных.

Нормальные показатели кровяного давления, измеряемого с помощью манометра, колеблются от 70 до 90 мм рт. ст. при диастоле и от 110 до 140 мм рт. ст. при систоле.

Кровяное давление человека в течение дня или на протяжении более длительного периода времени зависит от самых разнообразных факторов. Возбуждение, страх, беспокойство, напряжение, потеря крови в результате несчастного случая или во время операции – все это вызывает временные изменения кровяного давления даже у тех людей, чья кровеносная система функционирует относительно нормально.

Природа артерий такова, что они нивелируют толчкообразное движение крови, выбрасываемой в аорту. Направляя кровь к различным участкам организма в соответствии с приказами вазомоторного центра, артерии расширяются при каждом сокращении сердца и спадаются в промежутках между ними. Поэтому прерывистый ток крови постепенно выравнивается и к моменту перехода в капилляры кровь уже течет плавно и равномерно.

В капиллярах, которые настолько узки, что через них одновременно может пройти лишь один эритроцит, кровь течет совсем медленно, продвигаясь за минуту примерно на 2,5 сантиметра. Именно здесь она выполняет свою основную задачу, ту самую, которую некогда выполняло первозданное море. Затем, снова окрашиваясь в темный цвет, кровь покидает капилляры и оказывается в венулах – мельчайших разветвлениях венозного дерева. Далее она движется по все более крупным ветвям и наконец поступает в венозный ствол, другими словами, в полые вены, по которым и возвращается в правое предсердие.

На обратном пути к сердцу по венам часть крови продолжает выполнять исключительно важную для организма работу. В желудочно‑кишечном тракте кровь собирает продукты пищеварения и переносит их в печень, где они либо подвергаются химической переработке, либо откладываются «про запас», либо, опять‑таки с кровью, направляются в другие части организма. Протекая по дороге к сердцу через почки, кровь фильтруется в сложных образованиях и освобождается от мочевины, аммиака и прочих отходов.

Чтобы окончательно постигнуть принципы течения Реки жизни, необходимо рассмотреть одну из интереснейших особенностей венозного кровотока, а именно механизм подъема крови из нижней половины тела.

Роль стимулятора движения артериальной крови играет сердце, однако венозная кровь не имеет такого нагнетательного насоса. Что касается верхней половины тела, то здесь никакой серьезной проблемы не возникает, ибо кровь течет вниз к сердцу под действием силы тяжести. Однако из нижней половины тела кровь вынуждена выбираться, не рассчитывая на помощь силы тяжести или какого‑нибудь особого органа.

Природа, используя единственно верные методы естественного отбора, решила эту щекотливую проблему весьма остроумно.

В ряде мест по ходу вен расположены многочисленные и чрезвычайно эффективные клапаны. Эти клапаны, на которые в свое время обратили внимание величайшие анатомы прошлых веков – Фра Паоло Сарпи, Везалий и другие, могут открывать дорогу крови только в одну сторону – к сердцу. Только в этом направлении может пройти через них кровь. Если поток крови устремится от сердца, то он сам закроет клапаны и не сможет двигаться вспять. Кроме того, следует иметь в виду, что вены располагаются между скелетными мышцами. При любом движении тела одна из этих мышц сокращается и давит на вены. Давление скелетных мышц перегоняет кровь от одного клапана к другому, все ближе к сердцу. Каждый очередной клапан, пропустив кровь, закрывается и препятствует току в обратном направлении. Так, шаг за шагом, по своеобразному «клапанному лифту» кровь поднимается вверх и в конечном итоге возвращается в сердце.

Если человек мало двигается или подолгу остается в неизменной позе, вынуждая мышцы к бездействию, то тем самым подъем венозной крови к сердцу, особенно из нижних конечностей, затрудняется. В результате ноги «затекают», появляется ощущение неудобства.

В тех случаях, когда значительные количества крови не поступают из ног к сердцу, может начаться варикозное расширение вен. Это обычно происходит с людьми, которым по роду работы приходится много стоять, или же с теми, у кого вены теряют эластичность, а клапаны – способность плотно закрываться. В таких случаях кровь застаивается в венах и вызывает их набухание.

Не считая этого дефекта, который является скорее следствием неправильного образа жизни, нежели ошибкой природы, проблема подъема венозной крови к сердцу решена вполне удовлетворительно.

 

Глава XVII

Природа Реки

 

Кровь человека очень похожа на первозданное море. Имеющиеся между ними различия вызваны тем, что в свое время море было внешней средой, которая питала находящиеся в нем простейшие клетки и организмы, в то время как наша кровь является внутренней средой, соответствующей более специализированным нуждам организма, в котором она заключена.

Своей обширной поверхностью море соприкасалось с воздухом, поглощая кислород, который затем доставлялся примитивным организмам. Система замкнутой циркуляции – кровообращения – не имеет прямого контакта с воздушной средой, и обмен кислорода на углекислоту происходит в ней иначе. Для выполнения этой жизненно необходимой функции кровь выработала специфические структуры – красные кровяные тельца. Аналогично, и во многом по тем же причинам, в крови возникли и другие элементы и структуры, которых не было в первобытном море.

И все же, несмотря на десятки миллионов лет, прошедших с тех пор, как наши предки покинули первозданное море и приспособились к жизни на суше, жидкая составная часть нашей крови и вода древнего моря остались почти идентичными по своему неорганическому химическому составу.

Кровь, в ту пору вытеснившая море, но в чем‑то главном оставаясь тем же морем, по своему составу была все же значительно более сложной жидкостью, содержавшей во взвешенном состоянии плотные элементы. Что представляют собой эти элементы, каков состав жидкой части крови – это была загадка, над разрешением которой в течение многих столетий бились виднейшие ученые. На некоторые из них удалось ответить полностью, а к решению других мы только еще приблизились.

 

 

Рис. 25. Усовершенствованная техника микроскопирования позволила получить великолепный фотоснимок эритроцита в капилляре собаки.

Капилляр, представленный в поперечном сечении, как бы охватывает эритроцит.

 

Изучение природы крови стало возможным лишь по мере дальнейшего усовершенствования микроскопа и методов его использования, благодаря применениям новейших достижений химии и других наук, а также появлению новых приборов и инструментов.

Плотные элементы крови – красные кровяные тельца, различные виды лейкоцитов и особые образования, названные тромбоцитами, которые фактически не являются клетками, взвешены в плазме.

Красные тельца, или эритроциты , – наиболее многочисленные клетки крови. В их функции входит доставка кислорода к тканям и удаление из организма углекислоты. Количество красных кровяных телец подвержено некоторым колебаниям, но обычно оно составляет в среднем около 35 триллионов. В одном кубическом миллиметре крови мужчины (примерно 1/25 капли) содержится от 5 до 5,5 миллиона красных телец. По какой‑то непонятной причине в равном объеме женской крови красных телец на полмиллиона меньше.

Однако пол – не единственный фактор, влияющий на количество красных кровяных телец у человека. У людей, живущих в высокогорных районах, например в Тибете и Андах, число эритроцитов примерно на 30 % больше, чем у жителей морского побережья. При переезде из низменностей в высокогорные места, даже на непродолжительное время, у людей почти немедленно повышается количество красных кровяных телец. Их число в нашей крови возрастает также во время физических упражнений и любой мышечной нагрузки, в моменты эмоционального возбуждения или при повышении температуры окружающей среды.

Например, у людей и животных, работающих в глубоких шахтах, где атмосферное давление выше, чем на поверхности земли, количество эритроцитов по сравнению с жителями морского побережья меньше. В любом случае, когда организм нуждается в дополнительном снабжении кислородом, в кровообращение вводятся новые порции переносящих его красных телец. Когда же потребность тела в кислороде уменьшается, сокращается и количество красных телец в крови.

Судя по всему, увеличение количества циркулирующих красных кровяных телец вызывается одним из двух важных факторов: либо возрастает скорость образования этих элементов крови, либо же селезенка, орган, расположенный в верхней левой части брюшной полости и, помимо прочих функций, играющий роль резервуара для эритроцитов, выпускает дополнительно красные тельца в систему кровообращения.

Жизненный цикл красных кровяных телец весьма непродолжительный и бурный. Они образуются в костном мозгу позвоночника, ребер и других костей и проходят через несколько стадий, прежде чем приобретают окончательную форму. В первоначальный момент своего появления красное кровяное тельце – сравнительно большая клетка, практически бесцветная, с довольно крупным ядром и всеми другими чертами, характерными для живой клетки. По мере своего развития она уменьшается, постепенно лишается ядра и вбирает в себя гемоглобин, который и придает ей красный цвет. На этой стадии клетка попадает в кровь и превращается в окончательно сформированное красное кровяное тельце.

Зрелый эритроцит – это круглый, плоский и гибкий двояковогнутый диск. Эти свойства эритроцита увеличивают его поверхность, а следовательно, и способность связывать кислород. Благодаря им он также обладает возможностью сгибаться и свертываться при прохождении через узкий просвет капилляров.

Совершая круговое движение по системе кровообращения со средней скоростью 1–2 оборота в минуту, красные кровяные тельца подвергаются множеству опасностей. Мчась по сосудам, они наталкиваются на другие клетки; их подстерегают и другие неожиданности. Этим объясняется довольно короткая продолжительность жизни эритроцитов – она составляет 90–125 дней. Когда изношенные или состарившиеся эритроциты в ходе своего путешествия по системе кровообращения попадают в селезенку, их захватывают и разрушают крупные клетки – так называемые макрофаги. Макрофаги сохраняют железо, содержащееся в гемоглобине красных телец, и вновь возвращают этот ценнейший материал в организм человека.

Без гемоглобина ткани нашего тела могли бы задохнуться. Гемоглобин – это удивительное вещество, которому красные кровяные тельца обязаны своим цветом, – находится в родстве как с зеленым хлорофиллом растений, так и с пигментами, ярко окрашивающими оперенье птиц. Но у него есть важная особенность: гемоглобин содержит железо. Железа, которое содержится в крови взрослого человека, хватило бы на изготовление двухдюймового гвоздя. Именно благодаря этому железу гемоглобина красные кровяные тельца обладают способностью транспортировать необходимый для жизни кислород.

Как известно, на воздухе обычное железо быстро ржавеет, так как оно легко вступает в соединение с кислородом. Обычное окисленное железо не склонно отдавать кислород. Но железо составляет лишь незначительную часть гемоглобина. В основном же гемоглобин состоит из пигмента, называемого порфирином, и белковой субстанции – глобина. В соединении с этими веществами железо приобретает совершенно своеобразную способность к взаимодействию с кислородом – оно может с такой же легкостью отдавать кислород, как и соединяться с ним. Эта особенность, на которой мы подробнее остановимся ниже, позволяет крови без задержки снабжать любую клетку организма необходимым ей кислородом.

Но, однако, как ни важны красные кровяные тельца для жизни, сами они не имеют черт, присущих живому организму. Утрачивая ядро в последней стадии своего развития, они фактически превращаются в биохимические структуры, призванные с наибольшей эффективностью выполнять возложенную на них специфическую задачу. Лишенные способности и к самостоятельному передвижению, они направляются в различные части тела под воздействием тех факторов, которые регулируют кровоток.

Иное положение занимают белые кровяные тельца, или лейкоциты . В отличие от эритроцитов они самостоятельно перемещаются по крови. В каждом лейкоците имеется ядро, что уже само по себе является характеристикой живой клетки. Кроме того, лейкоциты обладают возможностью независимого «амебоидного» передвижения, что позволяет многим из них проникать сквозь эндотелиальные стенки капилляров и свободно передвигаться по всему телу. В широком смысле слова, белые кровяные тельца представляют собой автономные живые существа, ведущие относительно независимый образ жизни внутри человеческого организма. И все же лейкоциты – это неотъемлемая часть тела человека, ибо их жизнедеятельность подчинена нуждам высокоорганизованной системы клеток, к которой они принадлежат, т. е. самому человеческому телу.

Лейкоциты не содержат гемоглобина. В организме человека их примерно в 600 раз меньше, чем эритроцитов. Но и с этим «меньшинством» приходится считаться – в теле взрослого человека содержится в среднем около 60 миллиардов лейкоцитов! Эти якобы независимые организмы, блуждающие в крови и имеющие огромное значение для жизнедеятельности и здоровья человека, делятся на две основные группы – гранулоциты и лимфоциты . Каждая из них в свою очередь подразделяется на несколько разновидностей.

Гранулоциты гораздо многочисленнее лимфоцитов. У них имеется дольчатое ядро. Своим названием гранулоциты обязаны тому, что в их протоплазме, составляющей основную часть клетки, разбросаны мелкие зерна (гранулы).

Поскольку под микроскопом все гранулоциты выглядят почти одинаково, одно время полагали, что внутри этой группы не существует разновидностей. И лишь применение более тонких методик показало, что не все гранулоциты одинаковы, что они по‑разному реагируют с различными красителями. Установлено существование трех четко различающихся видов гранулоцитов, имеющих, помимо различной реакции на красители, и другие специфические черты. Они известны под названием нейтрофилы, эозинофилы и базофилы .

Нейтрофилы содержат гранулы, которые в присутствии нейтральных красителей (не дающих ни кислой, ни щелочной реакции) окрашиваются в фиолетовый цвет. Нейтрофилы относятся к числу активных защитников организма против любой инфекции. Действуя одновременно как солдаты, полицейские и санитары, они бросаются в атаку, пожирают и проглатывают микробы или любые частички инородных веществ, с которыми сталкиваются.

Эти белые тельца составляют 65–70 % общего числа лейкоцитов. По своему внешнему виду они очень похожи на амеб – одноклеточных животных, живущих в стоячей воде. Они свободно передвигаются в организме, выпуская ложноножки (псевдоподии) и передвигаясь при помощи этих похожих на щупальца выростов. Более того, они даже могут покидать кровеносные сосуды и перемещаться в любые ткани организма, нуждающиеся в защите от инфекции и нашествия микробов.

Две другие разновидности гранулоцитов – это эозинофилы, которые окрашиваются кислыми красками в красный цвет, и базофилы, зернистость которых под действием щелочных красителей приобретает синий цвет. Эти разновидности лейкоцитов весьма немногочисленны и значительно менее подвижны, чем нейтрофилы. Их назначение до сих пор не совсем понятно.

Как показали недавние исследования, количество эозинофилов – лейкоцитов, окрашивающихся в красный цвет, – увеличивается при таких аллергических состояниях организма, как астма, или же из‑за присутствия в организме определенных глистов, например анкилостом. Это навело некоторых ученых на мысль, что, возможно, эозинофилы ведут активную борьбу против паразитов и агентов, вызывающих аллергию. Но все это пока относится лишь к области догадок и не подтверждено практическими доказательствами.

Жизненный цикл гранулоцитов исследован недостаточно, известно лишь, что все они образуются только в костном мозге. Например, по мнению одних ученых, продолжительность жизни нейтрофилов равна нескольким часам, другие же полагают, что она составляет 21 день. Нейтрофилы являются важной частью защитных линий организма, поэтому срок их жизни так же трудно предсказать, как и срок жизни любого солдата, постоянно участвующего в сражениях. То желтоватое вещество, которое скапливается иногда в месте внедрения инфекции и известно под названием гноя, является последствием тех битв, которые ведут нейтрофилы. Гной состоит из погибших в сражении клеток: мертвых нейтрофилов и других лейкоцитов, погибших бактерий, жидкости и остатков пораженной ткани.

Ко второй важной группе белых телец, циркулирующих в крови, относятся лимфоциты. Их значительно меньше, чем гранулоцитов. Лимфоциты составляют всего 25 % общего количества лейкоцитов, находящихся в организме человека.

Как удалось установить, в группу лимфоцитов входят по меньшей мере две, а возможно и три, разновидности клеток. Две из них, существование которых не вызывает сомнения, – это малые и большие лимфоциты. Возможный третий член этой группы – разновидность белых кровяных телец, известная под названием моноцитов[3]. Ни одна из этих разновидностей лимфоцитов, по‑видимому, не играет активной роли в крови. Очевидно, для них система кровообращения не больше как средство перемещения из одной части тела в другую.

Малые лимфоциты, по размерам лишь незначительно превосходящие красные кровяные тельца, составляют подавляющее большинство клеток из группы лимфоцитов. Они имеют сравнительно крупное, слегка вдавленное ядро, окруженное тонким ободком протоплазмы. Эти клетки образуются в лимфоидной ткани, а не в костном мозге. Их обнаруживают в большом количестве в основном в селезенке и лимфатических узлах – стратегических пунктах, расположенных в важнейших соединениях лимфатических каналов и играющих весьма активную роль в защите организма.

Как уже указывает само название, большие лимфоциты похожи на малые лимфоциты, но отличаются от них своими размерами – их диаметр почти в полтора раза больше. В крови взрослых людей больших лимфоцитов совсем немного, но в крови ребенка они присутствуют, по‑видимому, в большом количестве. Они встречаются почти исключительно в лимфоидной ткани. Большие лимфоциты имеют крупное ядро овальной или почкообразной формы; окружающий ядро слой протоплазмы шире, чем у малых лимфоцитов. Эти и другие характерные черты позволили некоторым исследователям предположить, что большой лимфоцит – это не что иное, как незрелая форма малого лимфоцита.

Функции больших и малых лимфоцитов выяснены не до конца, хотя кое‑что нам известно, а о многом теперь уже можно догадываться. В отличие от нейтрофилов лимфоциты не захватывают и не пожирают инородные тела. Однако против некоторых микробов они ведут борьбу. Но, пожалуй, важнейшей особенностью лимфоцитов является их участие в образовании антител – глобулинов крови, играющих ведущую роль в механизме иммунологической защиты организма от заболеваний.

К третьему типу клеток, которые, как полагают, также входят в семейство лимфоцитов, относится моноцит. Моноцит по своим размерам несколько крупнее большого лимфоцита, кайма протоплазмы у него еще шире, а ядро имеет глубокое вдавление, придающее ему форму почки. Моноциты свободно передвигаются и очень активно участвуют в уничтожении бактерий и других инородных веществ. Они составляют около 5 % белых кровяных телец.

Наши познания о различных видах белых кровяных телец до сих пор довольно примитивны. Правда, мы уже научились распознавать большинство из них, но пока что не смогли полностью проследить жизненный цикл каждого из известных нам видов. Разумеется, это крайне затрудняет работу исследователей, ибо то, что мы подчас принимаем за независимые и обособленные тельца, на самом деле может оказаться всего лишь промежуточной стадией развития одной и той же клетки. К счастью, опыт, знания, инструментарий и методы исследования современной науки постоянно совершенствуются, и это вселяет в нас уверенность, что эта загадка крови, как и другие, будет разрешена.

В крови имеется еще один чрезвычайно важный для жизни форменный элемент, который нельзя причислить ни к красным, ни к белым тельцам. Это – мельчайшие структуры, названные кровяными пластинками, или тромбоцитами .

Диаметр тромбоцитов составляет всего лишь одну треть диаметра эритроцита. Они представляют собой обрывки протоплазмы гигантских клеток костного мозга, образующиеся в результате их распада. Подлинный процесс образования тромбоцитов показан в замечательном фильме, созданном в 1960 году двумя японцами, Редзюн Киносита и Сусумо Оно.

При помощи остроумной комбинации микроскопа и кинокамеры Киносита и Оно удалось заснять удивительный процесс образования кровяных пластинок через небольшое отверстие, вырезанное в большеберцовой кости (tibia ) живого кролика. Внутри костного мозга камера зафиксировала крупные клетки, так называемые мегакариоциты . Часть из них росла, созревала и затем делилась на две новые клетки, т. е. следовала по обычному пути клеточного размножения. Другие же клетки, по совершенно непонятным причинам отклонялись от этого пути. После деления обе новые клетки вместо того, чтобы развиваться самостоятельно, снова сливались воедино, причем вновь образованная клетка превышала размеры материнской клетки в момент первоначального деления. Эта новая клетка в свою очередь росла, а затем вновь делилась надвое. Повторялась прежняя картина: дочерние клетки снова соединялись в еще более крупную по размерам клетку. Столь странная аномалия процесса деления выявлялась на протяжении четырех поколений. Затем при очередном соединении дочерних клеток они образовывали гигантскую клетку, нестойкую и все время находящуюся в бурном движении. Эта клетка незамедлительно распадалась на составные части. Из обломков этого подвергшегося саморазрушению гиганта и возникали тромбоциты, которые затем попадали в циркулирующую кровь.

Тромбоциты резко отличаются друг от друга как по размерам и форме, так и, очевидно, по выполняемым в организме функциям. Несомненно, важнейшая из них, как мы увидим в дальнейшем, – это роль, которую они играют в образовании сгустков крови (тромбов) и заживлении поврежденных сосудов.

Перейдем к рассмотрению плазмы. Плазма более чем на 90 % состоит из воды и занимает примерно 54 % общего объема крови. Являясь главным транспортным средством системы кровообращения, она переносит различные кровяные тельца, а также большое количество других веществ, которые в отличие от форменных элементов находятся в растворенном состоянии. В число последних входят питательные вещества, продукты распада и другие органические и неорганические химические соединения. Собственно плазму образуют самые различные вещества. Это смесь бесчисленных белков и других веществ, выполняющих множество функций и играющих жизненно важную роль. Такова плазма, эта замечательная по своему составу, слегка опалесцирующая, желтоватая жидкость, остающаяся после удаления из крови кровяных телец.

После того как еще в XVII веке великий Мальпиги доказал, что кровь – не простая жидкость, многие исследователи крови посвятили себя нелегкому труду по выяснению ее состава. Как выяснилось, при помощи микроскопа нельзя было обнаружить вещества, из которых состояла кровь, на первый взгляд кажущаяся однородной. Разумеется, микроскоп позволял увидеть микробы и другие частички, содержащиеся в капле воды и не видимые невооруженным глазом. Но, увы, в него нельзя было разглядеть, что вода на самом деле является химическим соединением водорода и кислорода. Подобное, более тонкое исследование потребовало помощи со стороны химиков и физиков.

Используя более совершенные приборы и новейшие методы исследования, физиологи‑экспериментаторы и другие ученые доказали, что плазма состоит из определенных минеральных веществ, различных химических элементов и белков. Многие из этих составных частей удалось определить и измерить, правда, в первом приближении, но природа белков плазмы в основном оставалась тайной вплоть до 1941 года. В 1941 году Эдвин Кон, сотрудник Гарвардского университета, добился определенного успеха в изучении плазмы с помощью эффективного прибора, который с тех пор называется фракционатором Кона.

Предложенный Коном метод сочетал в себе элементы химии и физики. Ученый использовал физический принцип центрифуги, которая при больших оборотах позволила отделить плотные элементы крови от ее жидкой части. В своих химических исследованиях он исходил из тончайших различий в степени растворимости белков. Этот физико‑химический метод позволил не только отделить плотные составные части от жидкой, но и приступить к еще более сложному разделению многочисленных компонентов самой плазмы.

Современные исследователи, увы, еще далекие от совершенства, тем не менее уже хорошо изучили на практике основные составные части плазмы.

Плазма – это жидкость со слабощелочной реакцией, которая является внутренней сбалансированной средой тканей и без которой ткани не могли бы существовать. Кислотно‑щелочное соотношение измеряется концентрацией ионов водорода и обозначается символом pH; pH, равная семи, характерна для нейтральной реакции, более высокая – для щелочной, а меньше семи – для кислой; pH крови и других внутренних жидкостей тела равна примерно 7,43. Только две жидкости организма обычно обладают кислой реакцией: это желудочный сок, вырабатываемый в пищеварительном тракте, и выделяемая организмом моча.

Вопреки некоторым распространенным поверьям, «кислой крови» не существует, за исключением крайне тяжелых случаев диабета и нефрита в терминальной стадии (за несколько часов до смерти). Если же обладающие кислой реакцией вещества (побочные продукты обмена веществ) все‑таки попадают в кровь, они выделяются из организма почками и легкими. В любом случае эти вещества незамедлительно нейтрализуются особыми химическими соединениями – например двууглекислым натрием, – которые способствуют поддержанию в крови нормальной pH, равной 7,43.

Сама плазма на 91–92 % состоит из воды. В этой воде и растворены те 8–9 % веществ, которые связывают жидкую часть крови. Выделение и установление природы различных фракций, составляющих эти 8–9 %, было и остается одной из самых настоятельных задач, когда‑либо стоявших перед человеком.

Около 1 % растворенных субстанций составляют неорганические вещества – натрий, калий, кальций, фосфор, железо, йод, медь, магний и другие элементы, встречающиеся в различных комбинациях. Именно эти соли и придают плазме большое сходство с морем, далеким прародителем живых существ, ставших сухопутными.

В этой солевой жидкости растворены также белки плазмы. Эти важные составные части крови распределены в плазме, подобно тому как яичный белок растворяется в солоноватой воде, делая ее слегка мутной и вязкой.

Белки составляют около 7 % плазмы. Благодаря самоотверженным усилиям таких ученых, как уже упомянутый д‑р Кон, в настоящее время удалось классифицировать их на пять главных фракций.

Первая и самая крупная фракция – сывороточный альбумин . Он играет важную роль в создании осмотического давления плазмы, которое в свою очередь способствует поддержанию объема крови на необходимом уровне за счет регулирования обмена воды между кровью и тканями.

Далее следуют три разновидности сывороточных глобулинов – альфа, бета и гамма . Они связаны с реакциями иммунитета организма и образованием антител, которые помогают бороться с возбудителями таких заболеваний, как корь, свинка, грипп, дифтерия и сыпной тиф. Отдельные антитела в группах бета и гамма участвуют в реакции разрушения крови несовместимой группы (которая может быть введена при переливании).

И, наконец, пятый белок плазмы – фибриноген . Эта субстанция может превращаться в сеть фибрина, на основе которой образуются сгустки крови.

Помимо этих важнейших белковых фракций, плазма переносит продукты пищеварения, побочные продукты обмена веществ, а также множество других веществ – гормоны, ферменты и целый ряд дополнительных субстанций, состав которых еще предстоит изучить и определить.

Все сказанное выше в самых общих чертах подытоживает наши сведения о составе плазмы. И хотя нам известно уже довольно много, предстоит еще многое узнать, чтобы составить полную и ясную картину течения Реки жизни.

В XX веке человек узнал о существовании четко различимых групп крови. Этому в большой степени помог опыт переливания крови. С незапамятных времен, когда впервые делались переливания, было известно, что в одних случаях операции проходят успешно, в то время как другие оканчиваются смертельным исходом. Причину этого не могли выяснить вплоть до начала XX века, когда д‑р Карл Ландштейнер, удостоенный Нобелевской премии за свою в высшей степени оригинальную работу, нашел правильный ответ на эту вековую загадку.

Ландштейнер обнаружил, что кровь человека неоднотипна, ее можно разделить на четыре основные группы. Группы получили обозначение A, AB, B и 0. Было доказано, что у всех человеческих рас одни и те же группы крови. Разница заключается лишь в процентном соотношении групп у различных рас. Так, например, группа крови А встречается у большей части кавказских народов. Негроидные народы по преимуществу имеют группу крови B. Что же касается групп крови AB и 0, то их распространение среди обеих этих рас примерно одинаково.

Переливание крови кончается трагически в тех случаях, когда кровь донора несовместима с кровью реципиента. Антитела в крови больного склеивают (агглютинируют) красные тельца крови донора, образуя большие комки, которые застревают в узких капиллярах. Происходит блокада кровообращения, приводящая к серьезным нарушениям в организме и нередко даже к смертельному исходу.

Опытным путем установлено, что в большинстве случаев люди с группами крови A и B могут получать при переливании лишь кровь их собственной группы или же группы 0. Люди с группой крови AB могут получать кровь этой же группы, группы 0 и во многих случаях также кровь групп A и B. Людей с группой крови 0 называют «универсальными донорами», ибо их кровь совместима с любой другой группой. Но им можно переливать кровь исключительно их собственной группы.

Открытие групп крови позволило производить переливания крови в большом масштабе, благодаря чему во время прошедших мировых войн удалось спасти множество жизней. В ходе дальнейших экспериментов выяснилось, что существуют и другие различия, из‑за которых даже две разновидности крови одной и той же группы могут оказаться несовместимыми.

Одно из них было открыто в 1940 году тем же Ландштейнером, который в то время работал вместе с доктором Вайнером. После серии экспериментов с кровью макак‑резусов ученые обнаружили еще один агглютиноген крови, названный ими резус‑фактором (Rh‑фактор). Резус‑фактор встречается не только в крови макак‑резусов, которым он обязан своим названием, но и в крови людей. Лиц, обладающих этим агглютиногеном, называют резус‑положительными, а лиц, лишенных его, – резус‑отрицательными.

Примерно 85 % представителей кавказской расы являются резус‑положительными. Представители всех других рас почти целиком – оказались резус‑положительными.

Было установлено, что иногда при переливании крови резус‑фактор является причиной летальных исходов, хотя группы крови могут быть совместимыми. Это наблюдается сравнительно редко у больных, уже получавших до этого переливания крови, или у женщин, незадолго до этого разрешившихся мертворожденным ребенком.

Это обстоятельство послужило путеводной нитью, позволившей установить, что смертельный исход наступает лишь в тех случаях, когда резус‑отрицательному больному повторно переливают резус‑положительную кровь.

Отсюда был сделан вывод, что такое осложнение представляет собой своего рода иммунную реакцию, возникающую лишь в том случае, если больной однажды уже подвергался действию резус‑положительной крови. На выработку резус‑антител требуется примерно 12 дней. После повторного переливания резус‑положительной крови образовавшиеся антитела разрушают красные кровяные тельца донора.

Следует еще раз подчеркнуть, что опасность появляется лишь в случае переливания резус‑положительной крови больному с резус‑отрицательной кровью. Переливание резус‑отрицательной крови пациенту с резус‑положительной кровью обычно проходит безвредно, если в остальных отношениях кровь донора и реципиента совместима.

Открытие резус‑фактора пролило свет на происхождение некоторых акушерских осложнений. Около 13 % всех браков среди белого населения США происходит между резус‑отрицательными женщинами и резус‑положительными мужчинами. Почти половина детей от этих браков имеет резус‑отрицательную кровь. Остальные наследуют резус‑фактор от отцов.

Когда резус‑отрицательная мать впервые рожает резус‑положительного ребенка, обычно не отмечается каких‑либо осложнений. Но если и второй ребенок является резус‑положительным, последствия могут быть чрезвычайно серьезными. Антитела матери, возникшие уже при беременности первым резус‑положительным ребенком, вызывают тяжелое заболевание, называемое эритробластозом плода, результатом чего может быть рождение мертвого ребенка или же смерть ребенка вскоре после родов. В тех случаях, когда ребенок все‑таки выживает, он заболевает желтухой и анемией.

К счастью, такие случаи чрезвычайно редки. Лишь 5 % будущих матерей с резус‑отрицательной кровью во время беременности подвергается сенсибилизации резус‑положительным плодом. По всей видимости, это объясняется тем, что проникновение эритроцитов плода через плаценту в систему кровообращения матери – явление аномальное и происходит в исключительных случаях.

После открытия резус‑фактора Ландштейнером и Вайнером были обнаружены и другие факторы крови, и возможность новых подобных открытий отнюдь не исключена. Знание этих специфических факторов крови оказалось чрезвычайно полезным и позволило свести к минимуму риск при переливании крови. Переливание крови заняло прочное место в медицине, к нему прибегают для спасения жизни больного при шоках, потере крови и многих заболеваниях.

Знание различных факторов крови с недавних пор помогает решать случаи спорного отцовства. Впрочем, здесь для установления истины одних анализов крови недостаточно. Анализы крови не могут доказать, что тот или иной мужчина истинный отец ребенка. Во всяком случае, пока что не могут. С их помощью удается установить лишь непричастность подозреваемого в отцовстве – и то лишь в отдельных случаях.

Процедура проверки относительно несложная. Сначала гематолог определяет группы крови матери и ребенка. Затем, применив некоторые формулы законов наследственности, он определяет целый ряд типов крови, к одному из которых должна принадлежать кровь отца. Если кровь подозреваемого мужчины не совпадает ни с одним из этих типов, он не может быть отцом ребенка. Если же его кровь совпадает с одним из типов этого ряда, он может быть отцом, впрочем, как и любой мужчина со схожей разновидностью крови. Кровь тут бессильна доказать вину – если вообще уместно называть отцовство виной. Кровь может лишь свидетельствовать о невиновности.

Такова природа Реки жизни – гигантского скопления мириадов клеток и сложных водоворотов плазмы. А было время, когда человеку казалось, что кровь – это просто красноватая водичка – таинственная, волшебная вода жизни.

 

Глава XVIII

Речной транспорт

 

Первая клетка не смогла бы выжить, не будь особого «климата» жизни, создаваемого морем. Точно так же каждая из сотен триллионов клеток, составляющих организм человека, погибла бы без крови и лимфы. На протяжении миллионов лет, с тех пор как появилась жизнь, природа выработала внутреннюю транспортную систему, неизмеримо более оригинальную, оперативную и более четко управляемую, нежели любое из средств передвижения, когда‑либо созданных человеком.

По сути дела, кровь состоит из целого ряда транспортных систем. Плазма, например, служит средством передвижения для форменных элементов, включая эритроциты, лейкоциты и тромбоциты, которые по мере надобности передвигаются к различным частям тела. В свою очередь красные кровяные тельца являются средством переноса кислорода к клеткам и углекислоты от клеток.

Жидкая плазма переносит в растворенном виде еще множество других веществ, а также собственные компоненты, чрезвычайно важные для жизненных процессов организма. Помимо питательных веществ и отходов, плазма разносит тепло, накапливая или же по мере надобности высвобождая его и таким образом поддерживая нормальный температурный режим организма. Эта среда переносит многие из основных защитных веществ, охраняющих организм от болезней, а также гормоны, ферменты и другие сложнейшие химические и биохимические вещества, играющие самую разнообразную роль.

Современная медицина располагает довольно точными сведениями о том, каким образом кровь выполняет перечисленные транспортные функции. Что же касается других механизмов, то они до сих пор остаются объектом теоретических догадок, а некоторые, несомненно, еще только предстоит открыть.

Общеизвестно, что любая отдельная клетка погибает без непрестанного и непосредственного снабжения важнейшими материалами и не менее срочного удаления ядовитых отходов. Это значит, что «транспорт» крови должен находиться в непосредственном контакте со всем этим множеством триллионов «клиентов», удовлетворяя потребности каждого из них. Грандиозность этой задачи поистине не поддается человеческому воображению!

Практически погрузка и разгрузка в этой великой транспортной организации совершается посредством микроциркуляции – системы капилляров. Эти мельчайшие сосуды пронизывают буквально каждую ткань тела и подходят к клеткам на расстояние не более 0,125 миллиметра. Таким образом, каждая клетка тела имеет собственный доступ к Реке жизни.

Наиболее неотложную и постоянную потребность организм испытывает в кислороде. Человеку, к счастью, не приходится беспрестанно есть, ибо большинство необходимых для обмена питательных веществ может накапливаться в различных тканях. Иначе обстоит дело с кислородом. Это жизненно важное вещество накапливается в теле в ничтожно малом количестве, а потребность в нем постоянна и настоятельна. Поэтому человек не может прервать дыхание более чем на несколько минут – иначе это вызывает самые серьезные последствия и смерть.

Чтобы удовлетворить эту настоятельную потребность в постоянной подаче кислорода, кровь выработала чрезвычайно эффективную и специализированную систему доставки, в которой в качестве «товарных платформ» используются эритроциты, или красные кровяные тельца. Работа системы основана на удивительном свойстве гемоглобина в большом количестве поглощать, а затем немедленно отдавать кислород. По сути дела, гемоглобин крови переносит раз в шестьдесят больше того количества кислорода, которое может раствориться в жидкой части крови. Не будь этого железосодержащего пигмента, для снабжения кислородом наших клеток потребовалось бы около 350 литров крови!

Но это уникальное свойство поглощать и переносить большие объемы кислорода от легких ко всем тканям лишь одна сторона того поистине неоценимого вклада, который вносит гемоглобин в оперативную работу транспортной системы крови. Гемоглобин также перевозит в большом количестве углекислый газ от тканей к легким и таким образом участвует как в начальной, так и в конечной стадии окисления.

При обмене кислорода на углекислый газ организм с удивительным умением использует характерные особенности жидкостей. Любая жидкость – а газы в этом отношении ведут себя как жидкости – имеет тенденцию перемещаться из области высокого давления в область низкого давления. Если газ находится по обе стороны пористой мембраны и с одной ее стороны давление выше, чем с другой, то он проникает через поры из области высокого давления в сторону, где давление ниже. И аналогично, газ растворяется в жидкости лишь в том случае, если давление этого газа в окружающей атмосфере превышает давление газа в жидкости. Если же давление газа в жидкости выше, газ устремляется из жидкости в атмосферу, как это происходит, например, когда откупоривают бутылку шампанского или газированной воды.

Тенденция жидкостей перемещат








Дата добавления: 2016-01-26; просмотров: 688;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.094 сек.