Бастионы Реки жизни
Кровь – надежный защитник человека от множества болезней. Самыми разнообразными способами, подчас столь неясными, что нам приходится лишь догадываться о них, кровь защищает нас от кишащих повсюду патогенных организмов.
Некоторые элементы крови, особенно белые тельца – фагоциты, атакуют полчища вторгающихся микроорганизмов, пытаясь вначале локализовать их действие, а затем и уничтожить их. Но это лишь один фланг обороны, осуществляемой кровью. В жидкой части крови имеется множество биохимических веществ, участвующих в уничтожении возбудителей инфекций, создании иммунитета и в других тончайших процессах, благодаря которым организм человека сопротивляется болезням.
Роль белых кровяных телец в борьбе против вторгшихся инородных организмов впервые была раскрыта в 1884 году великим русским патологом Мечниковым. Мечников назвал прожорливых защитников тела фагоцитами , по комбинации греческих слов, обозначающих: «я пожираю клетки».
Илья Ильич Мечников жил и работал в России в XIX веке, в то время, когда царь, пытаясь задушить вольнодумие, которое могло бы привести к революции, ввел строжайшие ограничения на любые действия, противоречащие «интересам безопасности». Даже исследовательские учреждения находились под неусыпным наблюдением тайной полиций, стремившейся в самом зародыше задушить семена свободолюбивых идей.
Став жертвой бесконечных придирок и преследований, Мечников был доведен буквально до отчаяния. Не находя в себе сил противостоять давлению, но и не желая поступаться собственными убеждениями, он дважды пытался покончить жизнь самоубийством, и оба раза безуспешно. Наконец он бежал из России, переехал в Италию, а затем обосновался в Пастеровском институте в Париже.
Фагоцитирующее действие белых кровяных телец Мечников открыл, наблюдая за морской звездой, в тело которой он вонзил небольшой шип розы. В первый день он не заметил ничего заслуживающего внимания. Но на второй день, разглядывая ранку в микроскоп, обнаружил, что острие шипа было буквально окружено целым роем белых телец. Совершенно справедливо предположив, что лейкоциты пытались разрушить вредоносные организмы, занесенные в результате прокола, Мечников сформулировал теорию фагоцитоза следующим образом:
«Армия маленьких клеток, называемых фагоцитами, – писал он, – блуждающая по крови и тканям тела, способна атаковать болезнетворные микробы, и после битвы с ними во многих случаях ей удается одержать верх… над захватчиками…»
В наши дни, почти 70 лет спустя после первых наблюдений Мечникова, современная наука, естественно, гораздо лучше знакома с деятельностью фагоцитов. Но и в наших познаниях до сих пор имеются серьезные пробелы. Ученым предстоит уточнить, как происходит мобилизация фагоцитов крови, главным образом нейтрофилов, в результате которой миллионы этих клеток устремляются к пораженному участку, словно отвечая на призыв о помощи.
В тех случаях, иногда им не приходится бороться со специфическими агрессорами, фагоциты блуждают с места на место, подобно амебовидным самостоятельным организмам. Практически им доступны все органы, ибо они с легкостью проникают сквозь стенки капилляров в ткани. И повсюду, где бы они ни находились, едва лишь они сталкиваются с чужеродным организмом или веществом, они немедленно его атакуют и стремятся уничтожить его.
С помощью микроскопа удалась показать, как полчища фагоцитирующих нейтрофилов блокируют участок вторжения инфекции, подобно солдатам, отсекающим вражеский авангард. Эти фагоциты чрезвычайно прожорливы. Внутри одного‑единственного лейкоцита можно различить 15–20 микробов, проглоченных заживо и в течение некоторого времени продолжающих жить внутри фагоцита.
Примерно таким же образом белые тельца атакуют и уничтожают мертвые и изношенные ткани, сгустки крови, отслужившей свой век, и другие остатки, накапливающиеся в теле.
Оборона, которую ведут лимфоциты, отличается еще большим разнообразием, чем та, которую осуществляют зернистые лейкоциты – нейтрофилы. Лимфоциты свободно передвигаются по крови, но их деятельность сосредоточена в основном в лимфатических узлах, которые являются как бы фильтрующими станциями лимфатической жидкости.
В этих узлах лимфоциты действуют подобно фагоцитам, очищая лимфу от микробов, токсинов и других опасных веществ. Но у них есть и другая функция. Каким‑то до сих пор непонятным нам образом лимфоциты участвуют в образовании глобулина сыворотки – белковой фракции плазмы, играющей огромную роль в механизме иммунитета организма к инфекциям.
Клетки ретикуло‑эндотелиальной системы также следует отнести к фагоцитам. Эндотелиальные клетки, тождественные тем, которыми выстлана внутренняя поверхность кровеносных сосудов, встречаются в таких органах и образованиях тела, как соединительная ткань, селезенка, печень и костный мозг. Подобно фагоцитам крови и лимфы, они действуют и как солдаты, и как «уборщики мусора», уничтожая зловредные организмы и удаляя обломки тканей.
Таковы главные фагоцитирующие защитники организма. Помимо них существуют механизмы естественной сопротивляемости и различные виды иммунитета.
С самого момента рождения организм человека почти постоянно находится в контакте с болезнетворными микробами. Мы можем, не подозревая об этом, быть носителями возбудителей различных болезней, от обычного гриппа и до полиомиелита, и все же, несмотря на постоянную подверженность инфекции, мы чаще всего не заболеваем. Причина этому – сопротивляемость организма. С помощью разнообразных механизмов, многие из которых связаны с компонентами крови, организму человека удается сдерживать активность инфекционных возбудителей в течение большей части своей жизни, не давая им размножаться и вызывать проявления болезни.
Сопротивляемость болезням у разных людей бывает различной. Даже у одного и того же человека она может время от времени изменяться. На сопротивляемость влияет множество факторов, и не все из них еще изучены. К ним относятся шок, физическое напряжение, усталость, неправильное питание, радиоактивное облучение, потеря крови, эмоциональная нагрузка и другие факторы, подтачивающие силы организма.
К сожалению, истинная сущность механизмов сопротивляемости до сих пор нам не ясна, но известно, что это свойство предотвращения болезней зависит от множества защитных факторов, большинство которых так или иначе связано с кровью. В основном эти факторы сопротивляемости либо принадлежат к глобулиновым фракциям плазмы, либо переносятся ими.
Одним из наиболее эффективных средств борьбы организма с инфекциями являются антитела. Они были обнаружены сравнительно давно, но лишь в самое последнее время ученые смогли отчетливо выяснить их природу.
Любой болезнетворный агент, проникающий в организм человека и вызывающий его защитную реакцию, может быть обозначен как антиген. К ним относятся бактерии, вирусы и другие микроорганизмы, бактериальные яды и прочие токсины, красные тельца крови несовместимой группы и любые чужеродные ткани, введенные в тело путем трансплантации или подсадки. Ткани реципиента, или «хозяина», реагируют на присутствие антигена выработкой специфических веществ, обладающих свойством разрушать или обезвреживать именно этот определенный антиген. Это явление, названное реакцией антиген – антитело, наблюдается при самых разнообразных иммунологических конфликтах.
Ученые уже давно изучают механизм действия антител. Несколько лет назад, в июне 1960 года, на Национальном симпозиуме по медицине и химии, организованном Американским химическим обществом, американские исследователи Аллан Грособерг и Дэвид Преосмен выдвинули новую теорию. Исследования Гроосберга позволили установить, что антитело состоит из определенных аминокислот, соединенных между собой таким образом, что антитело по своим очертаниям совпадает с соответствующим ему антигеном, как ключ с замком; в результате антитело обезоруживает антиген и делает его неактивным. Помимо этой необычной «пригонки» антитела к антигену, между ними, очевидно, существуют какие‑то взаимодействующие силы, по всей вероятности, электрического происхождения. Как полагает Прессмен, они притягивают антитело к соответствующему ему антигену.
Поскольку появление антигена обязательно должно предшествовать возникновению борющегося с ним антитела, невосприимчивость к определенным заболеваниям развивается лишь после какого‑то периода, в течение которого организм подвергается инфекции и реагирует на присутствие болезнетворного агента. Но если организм однажды уже «научился» создавать антитела, то впредь эти субстанции, обеспечивающие иммунитет, находятся в крови наготове и предотвращают вторичное заболевание уже перенесенной болезнью. Однако подобный иммунитет оставляют после себя лишь некоторые болезни. При других заболеваниях иммунитет может сохраняться лишь в течение непродолжительного времени. Этот срок зависит от общего состояния больного, интенсивности воздействия повторной инфекции и ряда других факторов.
Если ребенок заболевает корью, его организм реагирует на антиген, вырабатывая антитела против кори. После выздоровления эти антитела создают надежный иммунитет против повторного заболевания этой же болезнью. Но если затем ребенок подвергнется, например, значительной дозе облучения (опасный порог до сих пор еще не выяснен), его иммунитет не только к кори, но и к другим болезням может исчезнуть.
При каждой болезни в организме возникают антитела, специфические именно для данного заболевания. Кроме того, антитела разделяют на несколько основных групп в зависимости от характера их действия. Одни антитела борются с микробами путем нейтрализации их активности. Другие, названные цитолизинами , вырабатывают вещество, которое в полном смысле слова уничтожает инородные организмы.
Другую разновидность антител составляют агглютинины . Эти антитела обезвреживают бактерии, заставляя их склеиваться в комки. В крови людей, заболевших брюшным тифом, вырабатываются агглютинины, которые не допускают повторного заражения. Еще один вид антител, названных преципитинами , образует нерастворимое соединение с некоторыми бактериальными ядами и чужеродными белками, тем самым лишая их активности.
Разумеется, эту классификацию различных видов антител отнюдь нельзя считать исчерпывающей. Ученым удалось лишь выделить основные группы антител в зависимости от характера их действия, и уже один этот факт является свидетельством значительного прогресса. Но подлинная структура антител, детали их возникновения и более специфический характер их действия до сих пор остаются загадкой.
B 1960 году, т. е. в то же время, когда усовершенствованная методика микроскопирования позволила человеку наблюдать образование тромбоцитов крови, впервые удалось сфотографировать молекулы антитела.
Рис. 26. Именно такими человек впервые увидел антитела в 1960 году, используя электронный микроскоп и особую технику. Показанные на фотоснимке антитела кролика увеличены в 132 000 раз.
На фотографиях молекулы антитела по форме напоминают стерженьки и внешне не отличаются от молекул гаммаглобулина – белковой фракции плазмы, в которой они обычно встречаются. Как установлено, толщина молекулы антитела составляет примерно 0,000004 миллиметра, а длина по неизвестным причинам колеблется и достигает 0,000016–0,00004 миллиметра.
Способность человека оставаться здоровым в кишащей микробами внешней среде связана с тремя видами иммунитета: активным, пассивным и естественным. При всех этих трех видах иммунитета защитные вещества переносятся белками крови и фактически входят в состав жидкой части крови.
Активный иммунитет является результатом выработки в организме человека собственных антител в ответ на контакт с какой‑либо определенной инфекцией. Он может быть также вызван искусственно путем введения человеку убитых или ослабленных микробов или разведенных токсинов болезни, как это делают, например, для предупреждения заболевания оспой, бешенством или полиомиелитом.
Такого рода иммунитет специфичен для одной какой‑то болезни; его называют «активным», так как он осуществляется антителами, образуемыми в крови и тканях человека.
Пассивный иммунитет достигается без участия активных защитных сил организма больного. Вместо этого человеку вводят готовые антитела, полученные от животных или другого «хозяина», подвергшихся воздействию возбудителя заболевания. Так, например, человек приобретает пассивный иммунитет к дифтерии, если ему ввести противодифтерийные антитела, полученные от лошади. Иммунитет, достигаемый при введении сыворотки лиц, переболевших скарлатиной и корью, также носит пассивный характер.
В отличие от активного и пассивного иммунитета естественный иммунитет не требует для своего развития предварительной «встречи» с болезнью, а также прививок и вакцинаций. Как свидетельствует сам термин, естественный иммунитет обусловлен врожденной способностью организма человека противостоять инфекциям. Например, два совершенно здоровых человека могут подвергнуться одинаковому заражению одной и той же болезнью, которую они еще не переносили. При этом один из них может заразиться, а другой, в силу природной невосприимчивости, останется здоровым. Человек может в одном случае устоять против интенсивного заражения, а в другом случае заболеть от воздействия значительно менее активной инфекции, ибо механизм естественного иммунитета бывает непостоянным не только у различных людей, но и у одного и того же человека.
Истинные причины естественного иммунитета изучены недостаточно, и четко определить их не представляется возможным. Однако проведенные недавно исследования позволили выдвинуть любопытные гипотезы. Так, ученые предположили, что иммунные факторы каким‑то образом связаны с определенными белками крови и другими компонентами плазмы. Эта гипотеза получила сильную поддержку в 1954 году, когда д‑ру Пиллемеру (Медицинский факультет Кливлендского университета, шт. Огайо) удалось выделить совершенно необычный белок крови.
Открытие этого белка, получившего название пропердин (от латинского глагола perdire, что значит «разрушать»), проложило новые пути научному объяснению природы естественного иммунитета. Как показали первые же исследования, выраженность естественного иммунитета к большинству болезней находится в прямой зависимости от содержания пропердина в крови. У животных, как и у человека, при высоком содержании пропердина сопротивляемость инфекциям также оказывается высокой. Соответственно при снижении уровня пропердина в крови иммунитет падает.
Как показали дальнейшие наблюдения, сам по себе пропердин не является особенно полезным. Однако в присутствии других компонентов крови – ферментоподобного вещества, называемого комплементом , и следовых количеств магния, обычно находящегося в крови здорового человека, образуется особый механизм, известный под названием пропердиновой системы. Очевидно, именно пропердиновая система способна разрушать или нейтрализовать целый ряд бактерий, вирусов, простейших и других болезнетворных агентов.
Особенностью пропердиновой системы является тот факт, что в отличие от антител, специфичных по отношению только к какой‑либо одной болезни, пропердиновая система, по всей видимости, обеспечивает общий иммунитет к целому ряду заболеваний. Более того, в отличие от других иммунных факторов пропердиновая система, очевидно, является частью врожденной устойчивости, общей как к неинфекционным, так и к инфекционным заболеваниям.
B замечательных исследованиях, проведенных недавно, сотрудники онкологического института Слоан‑Кеттеринг пересадили раковые клетки добровольцам‑заключенным исправительного дома в шт. Огайо. У некоторых заключенных раковые клетки привились, и их пришлось удалять хирургическим путем. Но в организме других клетки рака были отторгнуты и уничтожены иммунными механизмами. Как показали исследования, лица, у которых рак привился, имели низкий уровень пропердина в крови, а в тех случаях, где прививка не удалась, содержание пропердина было высоким.
К сожалению, наука не располагает достаточными основаниями, позволяющими считать, что пропердин в большей степени, чем другой какой‑либо фактор или сочетание ряда факторов, причастен к этой сопротивляемости организма раку. Но сама по себе возможность такой роли пропердина чрезвычайно интересна, как мы сможем убедиться в этом ниже.
Исследователи постоянно открывают в плазме все новые белковые фракции. На сегодняшний день уже обнаружено по меньшей мере около сотни этих сложных веществ. Однако какое количество их участвует в сопротивляемости организма инфекциям, предстоит выяснить в ходе дальнейших экспериментов. Но и те сведения о белках и других элементах плазмы, которыми располагают ученые, свидетельствуют о том, что кровь обеспечивает организм человека целой серией смыкающихся друг с другом защитных факторов, без которых человек, пожалуй, не прожил бы и года.
Одним из важнейших защитных факторов является механизм свертывания крови. Все мы не раз наблюдали образование сгустков, когда кровь, вытекающая из пореза, свертывалась при соприкосновении с воздухом. Как известно, сгустки образуются и внутри тела. Свертывание, характер которого до сих пор не выяснен до конца, позволяет производить автоматический «текущий ремонт» системы кровообращения и предотвращает серьезную потерю крови при повреждении кожи и тканей. Не будь этого, человек жил бы в вечном страхе перед смертельным кровотечением.
До недавнего времени полагали, что процесс свертывания имеет эпизодический характер: ведь повреждения системы кровообращения не столь уж часты. Но самые последние наблюдения показывают, что в системе кровообращения живого организма происходят постоянные разрушения. Достаточно положить ногу на ногу, потуже затянуть пояс, протиснуться сквозь толпу, а то и просто сесть за обеденный стол – каждое из этих абсолютно безобидных на первый взгляд действий может послужить причиной разрыва некоторых капилляров.
Д‑р Фултон из Бостонского университета осуществил довольно необычную прижизненную микрокиносъемку кровотока в капиллярах. На заснятых им кадрах видно, как рвутся тончайшие сосуды при, казалось бы, совершенно нормальных условиях. Замечательно, что в фильмах Фултона видно также моментальное образование тромба, запечатывающего «пробоину».
В основе процесса свертывания крови лежит превращение растворимого белка крови – фибриногена – в нерастворимое вещество – фибрин . Фибрин образует множество нитей, служащих основой для формирования сгустка. Превращение фибриногена в фибрин связано с целым рядом химических реакций, происходящих в крови. Но они настолько сложны, что современные исследователи знают о них лишь в самых общих чертах.
Веществом, вызывающим превращение фибриногена в фибрин, является фермент, биохимический катализатор, называемый тромбином . Тромбин обладает столь высокой активностью, что одна его часть способна превратить в фибрин миллион частей фибриногена. Если бы тромбин находился в крови в свободном состоянии, его бесконтрольная свертывающая активность вскоре привела бы к летальному исходу. К счастью, предохранительные химические механизмы организма постоянно начеку, и потенциально смертоносный тромбин обычно циркулирует в крови в своей неактивной форме, носящей название протромбина . Протромбин превращается в активный тромбин лишь в случае необходимости, и то только в нужном количестве.
В крови существуют и другие факторы, препятствующие избыточному свертыванию крови. К ним относится химическое вещество гепарин , который образуется в печени. Гепарин способствует поддержанию нормального равновесия между свертывающей и антисвертывающей системами крови.
Для образований сгустка крови пассивный протромбин должен вначале превратиться в тромбин. Этот процесс происходит под действием еще одного химического вещества – фермента тромбопластина . Тромбопластин пускает в ход механизм свертывания крови. Он образуется лишь в случае повреждения ткани или кровеносного сосуда, требующего «ремонта» с помощью сгустка.
Тромбопластин образуется двояким путем. Один из способов заключается в следующем: пораженные ткани сами выделяют жидкость, которая стимулирует образование этого фермента кровью. Другой путь образования тромбопластина осуществляется с помощью тромбоцитов. Тромбоциты скапливаются у краев разрыва кровеносного сосуда и высвобождают тромбопластин.
Интересно проследить за этим сложным химическим процессом и посмотреть, как же образуется сгусток крови. Вот человек с размаху садится на стул, и при этом резком движении у него рвутся несколько капилляров в ноге, причем сам он даже не подозревает об этом. Циркулирующие в крови тромбоциты попадают на шероховатые края разрыва, образуют комок, а затем, распадаясь, высвобождают тромбопластин. Этот фермент с помощью имеющегося в крови кальция воздействует на неактивный протромбин, также постоянно циркулирующий в крови, и превращает его в активный тромбин. Количество тромбина зависит от количества тромбопластина, высвободившегося в момент первоначального повреждения.
Тромбин, действуя как фермент, вызывает превращение растворимого фибриногена в нити нерастворимого фибрина, которые образуют заплатку на разрыве в капиллярной стенке. Густая сеть, состоящая из фибрина, улавливает кровяные тельца и становится основой сгустка. В то время как сгусток закрывает отверстие и предотвращает дальнейшую потерю крови, в самом организме происходит заживление ранки. После того как потребность в сгустке исчезает, он растворяется и удаляется различными элементами крови.
Таков в общих чертах известный нам механизм свертывания крови. Но многие промежуточные ступени предстоит еще уточнить. Так, например, известно, что в крови циркулирует незначительное количество вещества, носящего название антитромбин . Антитромбин контролирует образование и действие тромбина и тем самым предотвращает чрезмерное свертывание. Известно также, что протромбин, из которого образуется тромбин, производится в печени. Однако для образования протромбина необходимо присутствие витамина К, который вырабатывается в кишечном тракте. Недостаток этого витамина тормозит образование протромбина, а это в свою очередь пагубно отражается на работе механизма свертывания.
Несомненно, защита организма на этом важнейшем участке фронта связана с деятельностью других, до сих пор не открытых элементов.
Дальнейшие исследования призваны разрешить целый ряд исключительно важных проблем, связанных с защитными свойствами крови.
Глава XX
Капризы Реки
Общеизвестно, что чем сложнее предмет, тем больше вероятность связанных с ним различного рода неполадок и повреждений. Например, пишущая машинка гораздо чаще причиняет нам неприятности, чем карандаш. Известно также, что чем важнее роль какой‑либо детали машины или организма, тем серьезнее представляются последствия ее выхода из строя. Вряд ли кому‑нибудь придет в голову усомниться, что трещина в блоке цилиндров автомобиля куда опаснее, чем вмятина на крыле.
Природа крови и связанных с ней механизмов кровообращения чрезвычайно сложна. Именно этим объясняется тот факт, что точки их возможных нарушений крайне многочисленны, а области весьма обширны. Значение крови для жизнедеятельности организма колоссально, поэтому любое заболевание крови или нарушение кровообращения может иметь самые серьезные последствия. Способность крови к нормальному функционированию и мобилизации собственных ресурсов для устранения каких бы то ни было неполадок настолько необычна, что в нее подчас трудно поверить.
Заболевания, затрагивающие систему крови, можно разделить на три весьма обширные, но взаимосвязанные группы: болезни системы кровообращения; болезни органов, оказывающих влияние на состав крови и кровообращение: печени, селезенки, почек, костного мозга и т. д., и, наконец, болезни, поражающие, саму кровь, – анемии, лейкозы, нарушения свертывания и болезни, связанные с нарушением белкового состава плазмы.
Система кровообращения человека может поражаться различным образом. По сути дела, сердечно‑сосудистые заболевания в настоящее время являются самой частой причиной смертельных случаев как в Европе, так и в США. Под влиянием различных факторов давление в системе кровообращения отклоняется от нормы. Расстройство сердечной деятельности, нарушения нервных и биохимических механизмов, влияющих на работу системы кровообращения, вызывают серьезные заболевания, включая недостаточность кровообращения.
Человек становится жертвой перенапряжения, различных инфекций, даже нагрузок, обычных для жизнедеятельности. Не менее пагубную роль играют и такие факторы, как неправильное питание, недоедание и нищета, а также эндокринные и другие изменения, являющиеся неотъемлемой частью процесса старения организма.
Может наблюдаться поражение клапанов сердца или вен. В результате артериосклеротических изменений артерии теряют эластичность, становятся более плотными и толстыми. Жировые отложения в стенках артерий – заболевание, получившее название атеросклероза , – начинают замедлять, а подчас и останавливать кровоток. Они уменьшают прочность стенки артерии и при наличии высокого кровяного давления могут привести к разрыву сосуда.
В Соединенных Штатах Америки отмечают внушающее тревогу учащение случаев заболевания атеросклерозом. По мнению некоторых специалистов, это вызвано скорее нарушением жирового обмена, чем неизбежным процессом старения. Жировые отложения, характерные для атеросклероза, фактически начинают образовываться еще в детском возрасте и в дальнейшем могут либо исчезнуть вовсе, либо, наоборот, стать еще интенсивнее в зависимости от питания, обмена веществ, действия эндокринных желез и других факторов.
Когда коронарные (венечные) артерии, снабжающие кровью мышцу сердца, из‑за атеросклероза или по какой‑либо другой причине становятся слишком узкими, развивается так называемая коронарная болезнь. Система кровообращения оказывается не в состоянии доставить всю богатую кислородом кровь, которая необходима для бесперебойного функционирования сердечной мышцы. Даже умеренная недостаточность кровоснабжения сердца может вызвать грудную жабу (стенокардию), которая сопровождается резкими болями. Значительная недостаточность коронарного кровообращения (вызванная, например, тромбом или другим препятствием), которую часто называют коронарной закупоркой, или тромбозом, может вызвать почти мгновенную смерть.
Другим серьезным нарушением кровообращения является повышенное сопротивление артериол прохождению крови. Это нарушение носит название гипертонической болезни или, как чаще говорят, гипертонии. В США этим недугом поражено по меньшей мере 5 % взрослого населения.
Причина этой болезни до сих пор не ясна, хотя ее возникновение связывают с некоторыми нарушениями деятельности почек, нервной системы и эндокринных желез. Большую роль в подверженности этому заболеванию, очевидно, играет фактор наследственности, а также эмоциональные факторы, хотя с уверенностью утверждать об этом наука пока не может. Гипертония часто поражает кровеносные сосуды, сетчатую оболочку глаз, почки и мозг. Она может привести к таким серьезнейшим и часто оканчивающимся смертью больного нарушениям, как коронарная болезнь, недостаточность кровообращения и кровоизлияние в мозг.
В отличие от гипертонии низкое кровяное давление, или гипотония, обычно не представляет опасности, за исключением тех случаев, когда оно возникает в результате большой потери крови, туберкулеза или других серьезных заболеваний.
Когда кровяное давление постоянно ниже нормы, но никаких признаков болезни не наблюдается, гипотония носит название первичной , или эссенциальной . Основной симптом этой болезни – быстрая утомляемость, других симптомов нет. Действительно, люди с первичной гипотонией в меньшей степени подвержены сердечным заболеваниям и болезням почек и часто живут дольше, чем люди с более высоким давлением.
Другая группа нарушений со стороны крови касается заболеваний, связанных с нарушением функций других органов. Например, прямое повреждающее действие на состояние крови могут оказать болезни селезенки и почек. Если почки не справляются с очищением крови от отходов, происходит резкое увеличение токсичности крови и нарушение кислотно‑щелочного равновесия.
Как мы уже отмечали, селезенка является «кладовой» крови. Ее основная функция заключается в разрушении и удалении из организма изношенных красных, а возможно, и белых кровяных телец и тромбоцитов. Она, очевидно, играет также важную роль в сохранении железа гемоглобина и в регулировании образования эритроцитов костным мозгом. Любое инфекционное или иное поражение селезенки может повлиять на эти функции – подавить или усилить их и тем самым изменить состав крови, вызвав малокровие, лейкопению и другие заболевания. Иногда в крови может образоваться избыток тех или иных клеток, и тогда нарушается быстрота разрушения и удаления изношенных телец из кровотока. Может также возникнуть дефект в системе сохранения железа гемоглобина и его передачи в костный мозг.
Костный мозг, непосредственно участвующий в образовании эритроцитов, лейкоцитов и тромбоцитов, подвержен раковым заболеваниям, вторичным опухолям и другим болезням, которые могут изменить его строение и тем самым вызвать серьезные нарушения процесса кроветворения.
Печень, основной «химический завод» организма, непосредственно вырабатывает некоторые белки плазмы. Рак, цирроз и другие заболевания печени препятствуют этому процессу, что в свою очередь ведет к нарушениям кислотно‑щелочного баланса и осмотического равновесия, ослаблению сопротивляемости болезням и может вызвать серьезные расстройства механизма свертывания крови.
Воспаление легких и туберкулез также оказывают влияние на кровь. Уменьшая объем легочной ткани, способной к кислородному обмену, эти болезни сокращают снабжение тканей кислородом, осуществляемое красными тельцами.
И, наконец, мы переходим к болезням, поражающим саму кровь. Корни многих из них кроются не в крови, поэтому строгое выделение третьей группы не представляется возможным.
Мы уже отмечали, что повреждения различных органов вызывают изменения крови. Такой же результат имеют расстройства пищеварения, обмен веществ и другие процессы.
Некоторые болезни крови, по‑видимому, связаны с фактором наследственности, причиной других являются происходящие в крови таинственные процессы, о которых можно лишь догадываться. В целях простоты мы попытаемся произвольно сгруппировать эти болезни в соответствии с функциями крови или ее элементами, на которые они воздействуют.
Болезни, поражающие красные кровяные тельца или гемоглобин и влияющие на свойство крови переносить кислород, носят название анемий .
Болезни белых кровяных телец, или лейкоцитов, нарушающие сопротивляемость организма инфекциям, включают лейкоз, лейкопению и могут быть в общем названы заболеваниями лейкоцитов .
Болезни, влияющие на глобулин и другие белки плазмы, могут снизить количество циркулирующих антител и ослабить сопротивляемость организма инфекциям.
Далее идут заболевания, связанные с нарушением механизма свертывания крови. Они вызывают либо чрезмерное свертывание и тромбоз, либо же несвертываемость крови с последующим кровотечением.
Анемии (малокровие) – наиболее распространенные и поэтому важнейшие заболевания крови. Красные кровяные тельца, например, поражают возбудитель малярии и глисты (в частности, ленточные глисты и анкилостомы), яд змей и ядовитые вещества, содержащиеся в некоторых бобах и грибах. Существует множество видов анемий, возникающих при самых различных состояниях. Бывают легкие, почти ничем не проявляющиеся формы заболевания, и неизлечимые анемии, неизбежно приводящие к смерти.
Как мы уже говорили выше, у здоровых мужчин в среднем количество красных кровяных телец равно примерно 5 000 000 в 1 кубическом миллиметре крови, а у женщин – 4 500 000. Человек считается анемичным, если численность эритроцитов падает ниже 4 000 000.
Изменения размеров и формы эритроцитов и содержания в них гемоглобина также вызывают анемию. Любой из этих дефектов нарушает способность эритроцитов нести полный груз кислорода и увеличивает вероятность их разрушения под воздействием травматизирующих факторов кровообращения.
Малокровие возникает также при острой кровопотере – во время хирургических операций, кровотечений или при кровоточащей язве. При этом количество циркулирующих в крови эритроцитов уменьшается и кровь не справляется со снабжением тканей кислородом.
При обширной потере крови происходит сильнейший упадок всех жизненных сил, называемый иначе шоком, или шоковым состоянием.
Существует несколько групп болезней крови, объединенных под общим названием гемолитические анемии . Симптомы этих болезней часто совпадают с симптомами при резкой потере крови. Гемолитические анемии вызывают столь быстрое и массивное разрушение красных кровяных телец, что кажется, будто кровь буквально исчезает на глазах.
В эту группу входят токсические гемолитические анемии, возникающие при отравлении различными ядами – змеиным, некоторыми растительными ядами, а также химическими ядами – бензином, толуолом, мышьяком и свинцом. Токсины, вырабатываемые такими бактериями, как зеленящий стрептококк и менингококк, а также малярийными плазмодиями и другими паразитами, также способствуют развитию анемии.
У некоторых чрезмерно восприимчивых больных может развиться повышенная чувствительность к определенным лекарственным веществам и медикаментозным препаратам, например к сульфаниламидам, сульфону и ацетанилиду (антифебрину), выражающаяся в появлении резких аллергических реакций. В ходе этих реакций появляются антитела, разрушающие красные кровяные тельца.
Некоторые гемолитические анемии возникают в результате образования в организме веществ, разрушающих кровь, – гемолизинов, которые вызывают распад эритроцитов, или аутоагглютининов , обусловливающих агглютинацию (склеивание) эритроцитов с образованием комков. Подобные анемии могут наблюдаться при переливании несовместимой крови, нарушениях кроветворной системы и в результате ряда еще не выясненных причин.
В появлении некоторых форм гемолитической анемии немаловажную роль играет фактор наследственности. К такого рода заболеваниям относится так называемая средиземноморская анемия , возникающая лишь у людей, живущих на побережье Средиземного моря. Она отличается характерным появлением необычайно тонких красных кровяных телец, более хрупких, чем нормальные эритроциты, и легче разрушающихся в процессе кровообращения.
Другим врожденным заболеванием является серпоклеточная анемия , которая, по‑видимому, встречается лишь у негров. Для этой болезни характерно образование серповидных красных кровяных телец вместо круглых. Эти деформированные клетки, обладающие способностью закупоривать артериолы и капилляры, изнашиваются и разрушаются быстрее нормальных.
Злокачественная (пернициозная ) анемия , до последнего времени считавшаяся очень опасной болезнью крови, не относится к гемолитическим анемиям. Она, очевидно, возникает из‑за недостатка в организме еще не изученного вещества, содержащегося в желудочном соке. В результате этого организм не усваивает из кишечника витамин B12, необходимый для нормальной деятельности костного мозга. Поэтому образование кровяных телец нарушается, появляются эритроциты гигантских размеров, живущие вдвое меньше нормальных.
После того как была установлена причина злокачественной анемии, ее удалось взять под строгий контроль. Большие дозы витамина B12 обычно восстанавливают нормальную функцию костного мозга; поэтому в наши дни эта форма анемии перестала быть «злокачественной».
Некоторые формы малокровия обусловлены недостатком гемоглобина, который сплошь и рядом вызывается малым содержанием железа в пище. Беременные женщины, равно как и женщины с обильными кровотечениями при менструациях, нуждаются в большем количестве железа, чем обычно, и поэтому в их рацион следует добавлять соответствующие продукты, чтобы удовлетворить эту повышенную потребность. Железодефицитная анемия может также возникнуть у младенцев, питание которых слишком длительное время ограничено одним молоком, и у детей в период бурного роста.
Происхождение целого ряда анемий связано с нарушениями процесса пищеварения и обмена веществ и с заболеваниями желез внутренней секреции. В большинстве случаев при соответствующем внимательном лечении действие вызвавших их причин прекращается и анемия проходит. Однако при некоторых формах болезни прогноз бывает неутешительным, и, несмотря на повторные переливания крови, больной погибает. Апластическая анемия и другие сходные с ней болезни, вызванные неспособностью костного мозга вырабатывать кровяные тельца, часто не поддаются лечению, не проходит и полугода, как больной погибает. К счастью, эти тяжелые формы анемии довольно редки, и по мере накопления новых сведений о крови лечение этой болезни становится все более успешным.
Рис. 27. Переливание крови ребенку в кислородной палатке.
Существует также особая болезнь красных кровяных телец, в противоположность анемии приводящая к резкому увеличению количества эритроцитов в крови. Наиболее распространенная форма этого заболевания – истинная полицитемия . Помимо возрастания числа красных кровяных телец, для нее характерно повышение вязкости и общего объема крови. Эти признаки сопровождаются увеличением селезенки и печени, наклонностью к тромбозам и кровотечениям, а также рядом других симптомов со стороны кровеносной и нервной систем.
Причина развития полицитемии, как и многих других заболеваний крови, до сих пор неизвестна. Эта болезнь поражает людей среднего и пожилого возраста, и у мужчин встречается вдвое чаще, чем у женщин. Следует отметить, что полицитемия – одна из немногих болезней, при которых кровопускание – эта величайшая панацея древности! – действительно приносит реальную пользу, ибо оно снижает объем крови в организме человека до нормального уровня.
Перейдем к следующей группе болезней крови, которые поражают белые тельца – лейкоциты. Эти заболевания нередко сопровождаются уменьшением численности белых кровяных телец и ослаблением защитных свойств организма против инфекции.
Одним из важнейших заболеваний этой группы является агранулоцитоз , основной симптом которого заключается в разрушении активных защитников организма – нейтрофилов. Сюда же относится и лейкопения , для которой характерно резкое снижение количества циркулирующих в крови белых телец, обычно вследствие аллергической реакции организма на определенный химический препарат или лекарство.
Прямой противоположностью этих заболеваний является лейкемия [4]– болезнь, обычно приводящая к смертельному исходу. Для нее характерно патологическое увеличение количества белых телец, которые вытесняют другие элементы крови. При лейкемии поражаются кроветворные органы, что вызывает резкое размножение белых кровяных клеток, напоминающих раковые. При хронической лейкемии, поражающей обычно людей среднего возраста, больной может прожить три‑четыре года, а в отдельных случаях и дольше. Острые лейкемии обычно вызывают смерть через несколько недель, от силы через полгода.
Случаи этого напоминающего рак заболевания кроветворных органов стали встречаться все чаще. Неясно, происходит ли это по причине абсолютного увеличения заболеваемости лейкемией или же в результате более точной диагностики и учета. Если, как показывают исследования, лейкемия может быть вызвана чрезмерным облучением, то можно допустить, что происходит абсолютный рост числа заболеваний, который будет продолжаться и впредь по мере радиоактивного заражения атмосферы. Подверженность заболеванию лейкемией может быть связана с генетическими факторами, а факторы внешней среды могут при этом играть роль пускового механизма. Однако подлинная причина (или причины) лейкемии неизвестна. Во многих исследовательских центрах мира идет напряженное изучение этой болезни. Особый интерес представляют работы Стивена Шварца, проведенные им в Чикагском медицинском институте в 1960 году. Исследования Шварца убедительно доказывают, что по крайней мере некоторые формы лейкемии могут быть вызваны вирусом.
Получив очищенные бесклеточные экстракты крови больных лейкемией, Шварц вводил их мышам, которые после этого заболевали лейкемией. У людей‑добровольцев те же экстракты вызывали появление антител. Сыворотку их крови ученый вновь ввел мышам, которым был также впрыснут первоначальный экстракт, вызывавший заболевание лейкемией. У мышей, получивших инъекцию антител, заболевания лейкемией не наступило.
Не менее важные открытия, подтверждающие вирусную теорию, принадлежат Дж. Молони. В 1960 году в Национальном онкологическом институте Молони вызвал лейкемию у мышей и обнаружил, что экстракт их тканей содержал вирус большой концентрации. Эту вытяжку ввели затем новорожденным мышам; все они заболели лейкемией и погибли в течение десяти недель.
Однако вирусное происхождение лейкемии пока еще представляется спорным. По мнению целого ряда врачей, никакого инфекционного процесса при этом заболевании не происходит. В этой связи уместно вспомнить, что аналогичный спор велся примерно лет десять назад, после того как несколько отважных исследователей высказались в пользу вирусной природы полиомиелита. Многие ученые‑медики, не допускавшие и мысли о вирусе, резко опровергали эту точку зрения. И что же? Не прошло и нескольких лет, как теория вирусного происхождения полиомиелита получила всеобщее признание, и в наши дни эта болезнь, искалечившая жизнь многим тысячам людей, находится под серьезным медицинским контролем и, возможно, со временем будет окончательно побеждена!
Разумеется, только время покажет, насколько состоятельна теория вирусной природы лейкемии. Но уже тот факт, что в наши дни этому заболеванию уделяется особое внимание врачей и ученых, вселяет надежды на раскрытие природы болезни. Во всяком случае, если даже окажется, что вирус и в самом деле участвует в происхождении лейкемии, влияние факторов генетической предрасположенности и внешней среды никак нельзя будет полностью сбросить со счетов, ибо эти факторы определяют степень реакции наших тканей на присутствие вируса и общей восприимчивости к его внедрению в организм.
Лейкемия – одна из наиболее опасных болезней крови. Но есть и другие, столь же серьезные недуги, также поражающие систему белых кровяных телец. К ним относятся некоторые виды опухолей костного мозга (миеломная болезнь ), болезни лимфатической системы – лимфосаркома и лимфогрануломатоз .
Инфекционный мононуклеоз , который иногда называют железистой лихорадкой, также связан с изменением белых кровяных телец. Это заболевание поражает лимфатические узлы и вызывает увеличение числа циркулирующих лимфоцитов, многие из которых отличаются от нормальных клеток. Почти любая инфекция, даже если она непосредственно не влияет на кровь, косвенно затрагивает ее и приводит белые кровяные тельца в состояние «боевой готовности». Если же инфекция носит острый и распространенный характер, она может вызвать очень большие сдвиги среди циркулирующих лейкоцитов.
Болезни, поражающие белки плазмы, не столь многочисленны, как заболевания кровяных телец и расстройства системы кровообращения. Впрочем, вполне возможно, что это мнение глубоко ошибочно, ибо наши сведения о плазме еще очень ограниченны. Одно из таких заболеваний, известное под названием агаммаглобулинемии , проявляется в уменьшении или полном исчезновении гаммаглобулиновой фракции белков в крови. Поскольку именно к этой фракции белка плазмы принадлежат антитела, она тем самым связана с сопротивляемостью организма инфекциям; любое понижение ее уровня сопровождается повышенной наклонностью организма к различным заболеваниям.
Одна из форм этого заболевания весьма напоминает гемофилию в том отношении, что она передается по наследству и поражает лишь мальчиков. Другие формы могут возникнуть на почве других заболеваний, например нефроза, вследствие нарушения белкового обмена, длительного недоедания, а также резкой нехватки белков в пище. Еще одна разновидность этой болезни наблюдается непродолжительное время у новорожденного ребенка на третий или четвертый месяц после рождения, т. е. в тот период, когда в организме новорожденного происходит замещение гаммаглобулинов, полученных от матери, его собственными.
Серьезную потерю белков крови могут вызвать и другие довольно многочисленные расстройства. Например, при некоторых заболеваниях почек происходит повышенное выделение белков плазмы с мочой. Амебные абсцессы, рак и другие поражения печени часто нарушают способность этого органа образовывать белки плазмы.
Число возможных нарушений белкового обмена практически неограниченно, хотя далеко не всегда они представляют серьезную опасность для организма. Впрочем, если учесть тесную взаимосвязь различных органов тела, то следует признать, что повреждение одного из них прямо или косвенно отразится на других.
Теперь нам предстоит рассмотреть болезни крови, которые либо тормозят, либо, наоборот, ускоряют процесс ее свертывания.
Те заболевания, при которых свертываемость крови замедляется, объединяют под общим названием геморрагических диатезов , поскольку все они сопровождаются наклонностью к повышенной кровоточивости. Причины этих заболевании весьма разнообразны, но при них любое кровотечение, даже от пустячного укола или царапины, может стать смертельным.
Один из геморрагических диатезов вызывается падением количества тромбоцитов – тех мелких клеток крови, которые способствуют началу первой стадии процесса свертывания. Если образование тромбоцитов нарушено или же активность этих маленьких клеток по какой‑либо причине затормаживается, то это препятствует началу нормального процесса образования сгустка крови. Свертывание крови замедляется также при дефиците протромбина, который может быть вызван заболеванием печени, недостатком витамина К или наличием в крови избыточного количества гепарина или другого антикоагулянта.
Несвертываемость крови может явиться следствием некоторых нарушений в плазме. Так, например, недостаток фибриногена – к счастью, явление крайне редкое – делает свертывание крови практически невозможным.
Пожалуй, наиболее печальную известность среди геморрагических диатезов приобрела гемофилия . Этой славой она обязана частым случаям заболевания гемофилией среди членов королевских семей Европы, связанных родственными узами. Это врожденное наследственное заболевание передается только по материнской линии, однако, за редкими исключениями, поражает лишь мужчин. Причина гемофилии неизвестна, но исследователи допускают, что она объясняется врожденным отсутствием одного нормального, но еще не открытого белка плазмы, необходимого для процесса свертывания крови.
Геморрагические расстройства могут также возникать из‑за повышенной хрупкости капилляров. При разрывах капилляров вытекающая из них кровь разливается вокруг сосудов и просачивается сквозь кожу. Одно из подобных заболеваний вызывает недостаток витамина C. Другой формой, так называемой простой пурпурой , страдает ряд людей, особенно женщин, у которых подчас без особой причины на коже появляются синяки.
Большинство геморрагических диатезов имеет свои внешние, так называемые естественные причины, однако по крайней мере одна из них является делом рук человека. Речь идет о нарушении свертывания крови, которое вызывается антикоагулянтами, например гепарином. Антикоагулянты вводят в систему современного лечения сердечно‑сосудистых заболеваний, и они применяются для рассасывания тромбов или предотвращения их образования. Но они же могут сделать любое кровотечение крайне опасным.
Не менее опасны болезни, являющиеся прямой противоположностью геморрагическим и связанные с повышенной свертываемостью крови. Существует множество причин – далеко не все из них изучены в настоящее время, – из‑за которых кровь либо утрачивает свою способность растворять тромбы, либо же приобретает тенденцию к повышенному свертыванию. Это можно связать с недостатком антипротромбина, гепарина или других противосвертывающих веществ, имеющихся в крови здорового человека. Чрезмерное свертывание может быть вызвано артериосклерозом и, по мнению некоторых ученых, резко повышенным содержанием жиров в крови. Кроме того, на процесс свертывания крови влияют пищевые, обменные и эмоциональные факторы.
Сгусток, или тромб, появившийся в кровеносном сосуде, вызывает замедление кровотока и даже полную закупорку сосуда. Если это происходит в сосудах мозга, то больного разбивает паралич, или апоплексия. Образование сгустка в одной из артерий сердца, так называемый коронарный тромбоз, при котором прекращается приток крови к сердцу, – одна из основных причин внезапной смерти от сердечного приступа. Тромбоз легочной артерии также приводит к быстрому летальному исходу.
К счастью, не все тромбы настолько опасны. Сгусток в вене вызывает чрезвычайно болезненный воспалительный процесс, получивший название тромбофлебита. Однако его можно удалить хирургическим путем или подвергнуть рассасыванию, прежде чем успеют развиться необратимые нарушения.
В отдельных случаях приходится прибегать к хирургическому удалению тромба. Чаще всего, если только повышенная свертываемость не приводит к внезапной смерти, можно получить хорошие результаты, применяя гепарин, производные кумарина и другие антикоагулянты. Этот сравнительно новый метод лечения уже принес известные успехи.
И все же, несмотря на все усилия, медицина еще далека от искусственного создания того исключительного равновесия, которое присуще крови здорового человека, когда все факторы, способствующие и препятствующие свертыванию, автоматически осуществляют эффективный взаимный контроль. Науке предстоит немало потрудиться, прежде чем она сможет соревноваться с этим созданным природой механизмом.
Разумеется, в своем чрезвычайно кратком обзоре мы не смогли рассказать обо всех болезнях, поражающих кровь. Но даже этот далеко не полный перечень всех достаточно мрачных сил, препятствующих нормальному кровообращению, позволяет нам убедиться в исключительной способности крови самостоятельно справляться с большинством болезней.
Именно благодаря этой способности и выжил род человеческий.
Глава XXI
Дата добавления: 2016-01-26; просмотров: 1213;