Звуки в мире безмолвия

Океан слывет «миром безмолвия». В прошлом ученые даже не подозревали, что вода хорошо проводит звуковые волны. Это отчасти связано с тем, что звуки, возникающие в глубине моря, обычно не достигают человеческих ушей. Гидроакустика как самостоятельная наука зародилась относительно недавно. Она долго оставалась чисто теоретической дисциплиной и развивалась крайне медленно.

Интерес к подводным шумам и мысль о перспективности гидроакустической разведки зародились почти пять веков назад. Гениальный итальянец Леонардо да Винчи оказался основоположником и этой области знаний. Он не только произвел первые в мире эксперименты по обнаружению вражеских кораблей путем прослушивания возникающих при их движении подводных шумов, но и создал приспособления для гидроакустических исследований.

До начала второй мировой войны гидроакустика была развита слабо. Ученые не успели даже бегло изучить звуки океанских глубин. Многие обитатели «мира безмолвия» – весьма шумные существа, но военные гидроакустики знали о них до обидного мало.

Информация о биологических шумах оказалась гораздо важнее, чем думали в мирное время. Происхождение многих шумов, возникающих в наушниках гидрофонов, было трудно определить. Нередко звуки, производимые стаей рыб, принимали за шум работающих двигателей подводных лодок. Сколько раз расшумевшиеся рыбьи косяки давали повод для объявления боевой тревоги!

Чаще всего это происходило в сумерках, когда рыбы поднимаются из глубины и крупными стаями подходят к берегам. Большая и дружная стая могла произвести такую какофонию звуков, что они заглушали даже шум судовых двигателей. В то время никто и не подозревал, что рыбы могут создать такой грохот и скрежет. Акустики были уверены, что перед ними враг. Да и как было об этом не думать? Весной 1942 года немецкие и японские подводные лодки рыскали повсюду. Они выходили в море целыми стаями.

Наибольшую известность получил переполох в Чезапикском заливе весной 1942 года. Гидроакустики службы береговой охраны обнаружили сильный подводный шум. Только работа двигателей множества подводных лодок могла вызвать подводную акустическую бурю. Немедленно была дана команда приготовиться к бою. Нападения не произошло. Военная разведка, как ни старалась, не смогла обнаружить ни одного вражеского корабля, ни одной подводной лодки. Тревога оказалась ложной.

Акустикам редко удавалось установить причину ложных тревог. Неизбежная в таких случаях болезненная подозрительность дала повод для возникновения легенд о том, что японцы специально подгоняли звуки двигателей своих кораблей под шумы, создаваемые рыбьими стаями. А подражать было кому. Среди подданных Посейдона много шумных существ. В Западном полушарии широкой известностью пользуются обитающие у побережья Америки рыбы‑мичманы, о которых уже шла речь. Они обращают на себя внимание в период размножения, так как мечут икру по морским мелководьям. По окончании нереста самцы остаются охранять икру и непрерывно жужжат, отпугивая врагов.

Не менее шумно ведет себя рыба‑жаба. Издалека ее голос напоминает хриплое ворчание или гудки идущих вдали пароходов. Звуки издаются сериями два‑три раза в минуту. Непосвященному кажется, что судно взывает о помощи. Звуки так сильны, что вблизи вполне сошли бы за шум мчащегося мимо поезда или работу отбойного молотка. Их сила такова, что иногда вызывает болезненные ощущения. Измерения показали, что интенсивность рыбьих выкриков превышает 100 децибел.

Жабовидные рыбы – домоседы. Каждая живет на своем участке. В первой половине лета наступает брачный период. Где‑нибудь в ямке или под камнем самка откладывает комок крупных икринок, а заботливый отец охраняет ее около трех недель, пока не вылупятся головастикообразные личинки. Гудки и рычание родителей – это грозное предупреждение, что участок охраняется. Митинг «жаб», усиленный акустической аппаратурой, мог вызвать панику даже у представителей морской разведки.

В годы войны ученые не сумели выяснить всех виновников ложных тревог, но волнистого горбыля удалось поймать с поличным. Это он сеял панику у берегов Америки. Горбыли – широко распространенные крупные рыбы с горбатой спиной. Отсюда и название. Их около 150 видов. Они обитают в прибрежной зоне тропических и субтропических морей, живут стаями и держатся вблизи скал, гротов и россыпей камней. В сумерках рыбы покидают дневные убежища, поднимаются из глубин, заглядывают в заливы и в устья рек.

Идут к берегу шумными стаями. Немногие животные позволяют себе устраивать подобный гвалт. Особенно шумят рыбки, когда дело доходит до нереста. Видимо, любовные перепалки горбылей и вызывали переполох береговой охраны. Неблагоразумное поведение дорого обходится горбылям. Концерты, устраиваемые «морскими барабанщиками», живущими в Атлантическом океане, помогают рыбакам разыскивать рыбьи стаи. В Средиземном море орлиные горбыли, собравшись большой компанией, будят ночную тишину тоскливыми стонами, что позволяет рыбакам выследить и обложить стаю сетями.

Горластых существ в океане много. Хорошо известно, какой галдеж царит «на спевках» хора рыб‑крокеров, как бы охрипших от долгих вокальных упражнений. Немалый шум способно произвести скопление креветок. Трудно поверить, что эти небольшие, тихие существа могут устроить настоящую какофонию. Вихрь пощелкиваний, словно на асфальт высыпали мешок гороха, изрядно сдобрен скрипами и звонами. В общем, в море немало горлопанов, которые в определенные периоды жизни устраивают бурные митинги, шумные демонстрации, концерты хорового пения.

 

 

Не меньшую растерянность вызывали тоскливые стоны, вздохи, пронзительный визг. Эти стенания китов‑горбачей нередко слышали наблюдатели на Гавайских островах. О том, что китообразные способны издавать звуки, было известно еще в далекой древности всеведущим грекам. Но знал ли об этом кто‑нибудь из высших чинов военно‑морского флота? Заунывные жалобы горбачей казались звуками потустороннего мира и вызывали суеверный страх. Ведь ни офицерский мундир, ни диплом инженера не дают гарантии от веры во всякую чертовщину.

Для производства звуков необходим вибратор, порождающий звуковые волны. Им может быть любое упругое тело, способное колебаться от толчка, удара или трения. Если звук нужно усилить, используется резонатор. Для этой цели чаще всего служит воздух. Он упруг. Столбик газа, как стальная пружина, вибрирует по всей своей длине. Он может колебаться с любой частотой, но колебания воздуха скоро затухают.

Резонировать могут и стенки. Известны музыкальные инструменты, состоящие из одних вибраторов. Это ксилофон, тарелки, колокольчики и колокола. У флейты резонирует столбик воздуха. Стенки в усилении звука участия не принимают. У медных духовых инструментов – труб и валторн – вибрируют и воздух и металл стенок. Получается значительное усиление звука. «Музыкальные инструменты» животных нередко снабжены резонатором. Им может быть мембрана, столбик воздуха или стенки полости, где газ, необязательно воздух, находится под некоторым давлением.

Звуки рыб возникают при трении жаберных крышек, костных пластинок челюстей, сочленений скелета, плавников, костей так называемого Веберова аппарата… Карповые рыбы скрежещут зубами, спрятанными глубоко в глотке. Часто звуки производятся путем сокращения барабанных мышц, находящихся возле плавательного пузыря. Его стенки выполняют функции вибратора, а находящийся в нем воздух служит резонатором.

С помощью этих несложных устройств рыбы производят стуки, скрежет, удары, свисты, скрипы, всхлипывают, клохчут, мурлыкают, фыркают. Желтая макрель, встретив свою подругу, крякает от удовольствия. Бычок‑кругляк во время нереста скрипит, подзывая самку, а увидев ее, начинает квакать. Черная рыба лает по‑собачьи, а морские собачки предпочитают хрюкать. Морской петух (подумать только!), чтобы подать сигнал опасности, «кудахчет» курицей. Рыба‑лоцман на ходу постукивает, чтобы ее властелин акула не отвлекалась и не задерживалась. Во время нереста бычок‑кругляк верещит, а длиннорылый бычок‑подкаменщик жужжит. Зеленушка‑оцеллята, перед тем как подраться, цокает. Бычок‑кругляк, охраняя гнездо, рычит. Рыба‑дикобраз скрежещет, как ржавая дверная петля. Рябчик гризеус, выражая угрозу, барабанит, а сахалинский подкаменщик урчит. Испуганный спинорог свистит, чирикает, щелкает. Ракообразные чаще всего щелкают клешнями. А как киты производят звуки, неизвестно.

Главный музыкальный инструмент млекопитающих – голосовой аппарат. Он тесно связан с дыхательной системой, но у китообразных устройство дыхательных путей необычно. Дышать ртом зубатые киты не могут. Ни ротовая полость, ни глотка с легкими не сообщаются, а рот используется только для поглощения пищи. Дышат дельфины и кашалоты «носом». Слово «нос» взято в кавычки потому, что наружный носовой проход открывается у них не на конце рыла, а на темени. Кроме того, у них всего одна, зато весьма солидная ноздря. Ее отверстие находится в самой верхней точке головы.

Оно первым появляется на поверхности и последним скрывается в пучине вод. С таким дыхалом удобно, зависнув у поверхности, дремать, чуть‑чуть подгребая ластами, чтобы темя все время выступало наружу. Отверстие дыхала снабжено мощным клапаном – мясистой затычкой, предохраняющей легкие от попадания туда воды. Широкая ноздря позволяет до предела сократить время, затрачиваемое на вдох и выдох.

Дыхательную систему дополняют три пары асимметричных воздушных мешков, соединенных с носовым проходом. Они узкие, дугообразные, располагаются ярусами и похожи на три причудливые баранки, нанизанные на стержень носового прохода. Мешки окружены мышцами, и часть из них в местах соединений с носовым проходом имеет сфинктеры и внутренние пробки. Вероятно, воздушные мешки имеют непосредственное отношение к производству звуков, которые могут возникать при закрытом рте и заткнутом носе в результате перекачивания воздуха из одного мешка в другой.

Дыхательная система усатых китов проще. Пищевод не отделен от дыхательного пути. Лишь при заглатывании пищи вход в трахею временно закрывается с помощью надглоточного хряща. Нет надчерепных воздушных мешков, зато есть гортанный. Звуки, видимо, возникают в гортани, а воздушный мешок служит резонатором.

Подводные обитатели генерируют звуки широкого диапазона частот. У рыб их частота колеблется от 20–50 герц до 20 килогерц. Щелчки морских львов содержат звуки, лежащие в диапазоне 3–13 килогерц. Зубатые киты генерируют ультразвуковые импульсы с частотой 60–90 килогерц, и, видимо, для них это не предел. Нужно думать, что обитатели морской бездны должны слышать хотя бы издаваемые ими звуки. Между тем на голове рыб напрасно искать каких‑либо признаков звуковоспринимающих органов. Даже млекопитающие, переселившиеся для постоянного жительства в океан, в процессе превращения в китов утратили ушные раковины. При движении они неизбежно вызывали бы возмущение пограничного слоя воды, обтекающего тело пловца, и порождаемый этим шум заглушал бы другие звуки.

У рыб есть лишь внутреннее ухо, а среднее и даже барабанная перепонка отсутствуют. Нехватка важнейших блоков звуковоспринимающей системы привела к представлению, что слух у рыб неразвит и звуки не имеют для них значения. Лишь лет пятьдесят назад их слух был реабилитирован. Оказалось, что рыбы прекрасно слышат низкие звуки от 50 до 2000–5000 герц и активно ими интересуются.

Звук как физическое явление представляет собой регулярные колебательные движения частиц упругой среды, так сказать, волны сжатия, и в виде волн распространяется от места своего возникновения во все стороны пространства, если, конечно, для этого не возникает каких‑либо препятствий. При прохождении звуковой волны в зависимости от создаваемого ею давления частицы среды смещаются вперед и назад. От уровня давления звуковых волн зависит сила звука.

При этом существенное значение имеет среда, в которой распространяются звуковые волны. Она оказывает звуковым волнам акустическое сопротивление, что приводит к снижению звукового давления. Вода, особенно морская, в 800 раз плотнее воздуха. Неудивительно, что при одном и том же исходном звуковом давлении интенсивность звуковых волн в воде будет существенно ниже, чем в воздухе.

Скорость распространения звуковых волн не связана ни с причиной, их породившей, ни с их частотой, ни с силой звука или количеством энергии, которую несут звуковые волны. Она зависит только от особенностей среды, в которой звук распространяется. В воде он бежит в четыре с лишним раза быстрее, чем в воздухе. За секунду звук покрывает более полутора километров.

Длина звуковой волны находится в пропорциональной зависимости от скорости звука. Чем большее расстояние за единицу времени пробежит звук, тем длиннее должны быть волны. Поэтому при одинаковой частоте звуковая волна, распространяясь в воздухе, будет в 4,5 раза короче, чем в воде. Например, длина волны ультразвука с частотой 50 килогерц, то есть 50 000 колебаний в секунду, равна в воздухе 6,8, а в воде – 31 миллиметру. Чтобы животное восприняло звук, нужно вызвать колебание специальных структур его звукоприемника. Это происходит за счет энергии, переносимой от источника звука с помощью звуковых волн. Поэтому интенсивность – важнейшая характеристика звука. Человек улавливает звуки при смещении мембраны улитки всего на десятимиллиардную долю миллиметра!

Тело рыб прозрачно для звуков. Значительно хуже проводят звук отолиты внутреннего уха, твердые образования, соединенные с волосками рецепторных клеток. Поэтому именно отолиты отзываются колебаниями на приход звуковой волны и с помощью волосков возбуждают чувствительные клетки.

Отсутствие среднего уха, где происходит усиление звуков, серьезный недостаток. Он компенсируется наличием плавательного пузыря, осуществляющего функцию барабанной перепонки и с помощью 4 пар костных рычажков передающего звуковые колебания во внутреннее ухо. Плавательный пузырь, кроме того, способен трансформировать высокочастотные волны в колебания более низкой частоты. Таким образом, этот орган повышает чувствительность слухового аппарата и расширяет диапазон воспринимаемых звуков.

Рыбы, имеющие плавательный пузырь, способны воспринимать звуковые колебания частотой до 8 килогерц и замечают разницу между звуками, отличающимися друг от друга по частоте всего на 3 процента. Беспузырные рыбы такими талантами не обладают. Их восприятию доступны звуковые волны лишь до 2–3 килогерц, а различать их они способны лишь при 10‑процентной разнице. В восприятии самых низких звуков до 500–600 герц у рыб принимают участие и другие рецепторы, о чем будет отдельный разговор.

Пространственный слух – важнейшее свойство звуковоспринимающего аппарата. Для животных важно не только, кто или что является источником звуковых волн, но и где находится возмутитель спокойствия. Это удается определить благодаря совместной работе обоих ушей.

Обычно звуковая волна сначала попадает в ухо, ближайшее к источнику звука, а немного позже добирается и до второго. Разница во времени – главный источник информации о месте возникновения звука. Диаметр человеческой головы в среднем 18, окружность 56–58 сантиметров. Если в момент подхода звуковой волны человек стоит к ней боком, звук, обегая череп, чтобы достичь противоположного уха, должен покрыть расстояние в 28 сантиметров. Один сантиметр звуковая волна проходит за 30 микросекунд. На весь путь потребуется 840. Немного, но мы замечаем и гораздо меньшую разницу. Когда источник звука находится на 3 градуса правее средней линии тела, звук до левого уха доберется с запозданием всего в 30 микросекунд. Мы способны оценить эту разницу и, оперируя ею, достаточно точно определить, откуда раздался звук.

К сожалению, таким способом можно определить местонахождение лишь низкочастотных источников звука. Слуховой аппарат высчитывает не просто разницу во времени прихода звука как такового, а разницу во времени прихода одинаковых фаз звуковой волны. Максимальное опоздание прихода звука ко второму уху может достигать 840 микросекунд. Поэтому нужно, чтобы время полного цикла звуковой волны, от одного максимума давления до другого, было больше 840 микросекунд. При более высоких звуках, имеющих более короткие волны, слуховые центры нашего мозга начинают путаться. Например, звуку с частотою 10 000 герц, идущему под углом 55 градусов, чтобы обогнуть голову, нужно 450 микросекунд. Продолжительность цикла равна 100 микросекундам. Следовательно, огибая голову, звуковая волна успеет сделать 4,5 цикла.

Однако до слуховых центров мозга информация о 4 полных циклах звуковой волны просто не дойдет. Для определения направления звука они будут оперировать разницей в 0,5 цикла и, естественно, не смогут решить, где он возник. Поэтому по времени прихода можно определить лишь местоположение источников звука с частотой до 1300 герц.

Уши наземных животных к работе под водой не приспособлены. Погрузившись в воду с головой, каждый может убедиться, что не способен определить даже местоположение источника громких звуков. В воде скорость их распространения возрастет в 4,5 раза. Соответственно в 4,5 раза сократится разница времени прихода звука в одно ухо по сравнению с другим, но слуховые центры мозга не способны сделать поправку на возросшую скорость.

Другим источником информации о местоположении звука является его интенсивность. При звуках низкой частоты длины звуковых волн несоизмеримо больше размера головы. При 100 герцах она равняется 3,3 метра. Такая волна легко огибает голову. Другое дело, если волна маленькая. У звуков с частотой 10 000 герц длина волны всего 3,3 сантиметра. Высокие звуки отражаются головой, и второе, более отдаленное ухо оказывается как бы в акустической «тени». Звук дойдет и до него, но дойдет значительно ослабленным. Если источник звука находится под углом 15 градусов, то для звука с частотой 1000 герц разница интенсивности составит 150 процентов, а при частоте 15 000 герц – 900.

Уже при частоте 3000–4000 герц разность интенсивности звуков достаточно велика и позволяет определить, откуда он доносится. В воде наземным животным этот способ не помогает. Звуковые волны, наткнувшись на голову животного, погруженную в воду, вместо того чтобы отразиться от нее, распространяются по костям черепа и прямиком добираются до внутреннего уха. Таким образом, обычные механизмы, позволяющие наземным животным устанавливать местоположение источника звука, под водой не работают.

Как же приспособились к жизни в воде морские млекопитающие? Как они умудряются разбираться в звуках подводного мира? Китообразные в этом отношении не испытывают серьезных затруднений. Природа, тысячелетиями шлифуя и совершенствуя их слуховую систему, нашла блестящее решение. Среднее и внутреннее ухо дельфина не вмонтированы в костный череп, как у всех наземных существ. Замурованные в особое, чрезвычайно твердое костное вещество, звукоприемные устройства в виде отдельных образований, названных буллей, подвешены к черепу на специальной сухожильной связке. Для большей надежности булля отделена от остального черепа специальными полостями, заполненными воздухом или пеной из белковой эмульсии. У усатых китов‑полосатиков связь черепа со слуховой костью, хотя и незначительная, сохранилась, однако специальная звукоизоляция препятствует переходу звука с черепа на буллю. Полностью независимые друг от друга звукоприемники правого и левого уха превосходно приспособлены для определения местоположения источника звука. Дельфины афалины в огромном бассейне способны по всплеску безошибочно определить, куда упала рыбка, крохотная дробинка или просто капля воды. Особая конструкция органов восприятия звуков морских млекопитающих свидетельствует об огромном значении для них слуха.

 

 








Дата добавления: 2016-01-26; просмотров: 949;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.017 сек.