Абсолютная энтропия
Поскольку энтропия - величина экстенсивная, её значение для вещества при каждой данной температуре Т является суммой значений, соответствующих каждой температуре в интервале от 0 К до Т. Если в уравнении (3.5) принять нижнюю температуру интервала интегрирования равной абсолютному нулю, то
2 Т2 dT ò dS = Cp ò ¾¾ . 1 0 T |
Следовательно, зная значение энтропии при абсолютном нуле, с помощью этого уравнения можно было бы получить значение энтропии при любой температуре.
Тщательные измерения, проведённые в конце XIX века, показали, что при приближении температуры к абсолютному нулю теплоёмкость любых веществ Ср стремится к нулю:
lim Cp = 0 .
T ® 0
Это значит, что величина Ср/Т конечна или равна нулю и, следовательно, разность ST - S0 всегда положительна или равна нулю. На основании этих рассуждений М.Планк(1912) предложил постулат:
При абсолютном нуле температуры энтропия любого вещества в виде идеального кристалла равна нулю.
Этот постулат Планка является одной из формулировок 3 начала термодинамики. Его можно пояснить на основе представлений статистической физики: для идеально упорядоченного кристалла при абсолютном нуле температуры, когда тепловое движение частиц отсутствует, термодинамическая вероятность W равна 1. Значит, в соответствии с уравнением Больцмана(3.1), его энтропия равна нулю:
S0 = k ln 1 = 0
Из постулата Планка можно сделать вывод о том, что энтропия любого вещества при температурах, отличающихся от абсолютного нуля, является конечной и положительной. В соответствии с этим энтропия является единственной термодинамической функцией состояния, для которой можно определить абсолютное значение, а не только изменение в каком-либо процессе, как в случае других функций состояния (например, внутренней энергии и энтальпии).
Из вышеприведённых уравнений следует также, что при температуре, приближающейся к абсолютному нулю, от охлаждаемого тела становится невозможным отнять какие-либо, даже очень малые, количества теплоты из-за бесконечно малой теплоёмкости. Иными словами,
с помощью конечного числа операций невозможно понизить температуру тела до абсолютного нуля.
Это выражение носит название принципа недостижимости абсолютного нуля температуры и наряду с постулатом Планка является одной из формулировок третьего начала термодинамики. (Отметим, что в настоящее время в эксперименте удалось понизить температуру до 0,00001 К).
Принцип недостижимости абсолютного нуля температуры связан и с тепловой теоремой В.Нернста(1906), согласно которой при приближении к абсолютному нулю величины DН и DG = DН + ТDS (G - энергия Гиббса, о которой будет говориться ниже) сближаются, то есть при Т = 0 должно иметь место равенство
DG = DН.
Дата добавления: 2016-01-26; просмотров: 1361;