ГЛАВА 3. ФУНДАМЕНТАЛЬНЫЕ Концепции ЕСТЕСТВОЗНАНИЯ 2 страница

С электронной конфигурацией атома связаны такие его свойства, как энергия ионизации, сродство к электрону, электроотрицательность, степень окисления.

v Энергия ионизации- это энергия, необходимая для отрыва наиболее слабосвязанного электрона от атома. Она выражается в электронвольтах. При отрыве электрона от атома образуется заряженная частица- ион. В данном случае ион будет иметь положительный заряд. Такие ионы называются катионами. Для элементов одного периода энергия ионизации возрастает слева направо с увеличением неметаллических свойств у элементов. В группах энергия ионизации уменьшается сверху вниз с увеличением металлических свойств.

v Сродство к электрону- это энергия, которая выделяется при присоединении к атому одного электрона Она также выражается в электронвольтах. При присоединении электрона к атому образуется отрицательно заряженный ион - анион. В периодах слева направо сродство к электрону увеличивается. Наибольшим сродством к электрону обладают галогены.

v Электроотрицательность - это способность атома притягивать к себе электроны в соединении. Притягиваемые электроны являются валентными, т. е. это электроны, которые участвуют в химической связи. Инертные (благородные) элементы не обладают электроотрицательностью. Наиболее электроотрицательным из элементов является фтор.

v Степень окисления- это формальный заряд атома в соединении, который возник бы, если бы все атомы в этом соединении были бы в виде ионов, а электроны смещены к наиболее электроотрицательному элементу. Номер группы в периодической системе численно равен положительной высшей степени окисления любого элемента данной группы в соединениях с кислородом.

Предмет изучения органической химии некогда ограничивался соединениями углерода, имеющими растительное и животное происхождение. В наше время органическая химия – это наука, изучающая природные и синтетические соединения углерода с другими элементами.

Ежегодно число синтезированных органических соединений возрастает на 250–300 тысяч. Оно превышает число известных неорганических соединений в десятки раз. Многообразие органических соединений определяется уникальной способностью атомов углерода соединяться друг с другом простыми и кратными связями, образовывать соединения с практически неограниченным числом атомов, связанных в цепи, циклы, каркасы, образовывать прочные связи почти со всеми химическими элементами.

Основным методом органической химии является синтез. Теория химического строения органических веществ базируется на положениях, впервые сформулированных русским химиком Александром Михайловичем Бутлеровым (1828–1886). В органической химии можно выделить области исследований соединений, относящихся к различным классам и имеющих различное происхождение: химия ароматических соединений, химия природных соединений, нефтехимия.

До сих пор ведутся споры, можно считать самостоятельным разделом химии аналитическую химию. Вряд ли они состоятельны. Анализ – важнейший метод химии. До первой половины XIX века именно аналитическая химия была основным разделом химии. Аналитическая химия – это наука об определении химического состава веществ и, в некоторой степени, химического строения соединений.

Родоначальником научной аналитической химии считают английского физика и химика Роберта Бойля (1627–1691), который первым ввел понятие «химический анализ». Без тщательного, точного анализа развитие химии невозможно. Любой синтез обязательно сопровождается анализом. Для современных технологий необходимы особо чистые вещества, а содержание ничтожных долей примесей в них можно определить лишь аналитическими методами.

Основная цель аналитической химии – обеспечить точность, высокую чувствительность, быстроту, избирательность анализа. Развитие аналитической химии привело к возникновению химической диагностики, позволяющей непрерывно определять различные характеристики протекающих процессов и образующихся веществ.

В аналитической химии широко стали использоваться физико-химические и физические методы. Физические методы изучения веществ и воздействия на них получили применение и в других областях химии. Это привело к формированию новых важных направлений химии, например, радиационной химии, плазмохимии. Химия экстремальных воздействий играет большую роль в получении новых материалов, например для электроники, или давно известных ценных материалов, например алмазов, сравнительно дешевым синтетическим путем.

На грани исследований физических и химических явлений возникла физическая химия. Изучение тепловых эффектов химических реакций породило термохимию. Химические процессы, протекающие под действием электрического тока, стали основой электрохимии. В основу современной физической химии легли также учения о растворах, о скоростях и механизмах химических реакций, о строении молекул и многие другие. Физическая химия – это наука об общих законах, определяющих строение и химические превращения веществ в различных условиях. Термин «физическая химия» принадлежит М. В. Ломоносову (1711–1765), который в 1752 году впервые прочитал студентам Петербургского университета курс этой науки.

Она исследует химические явления с помощью теоретических и экспериментальных методов физики. Физическая химия является основным теоретическим фундаментом современной химии. В последние годы все большее внимание уделяется углубленному анализу общих закономерностей химических превращений на молекулярном уровне; широкому использованию математического моделирования; изучению воздействия на химические процессы сверхвысоких и сверхнизких температур и давлений, радиации и магнитного поля.

Все больше стираются границы и между химией и другими естественными науками. Биохимия – биологическая химия – изучает химический состав и структуру веществ, содержащихся в живых организмах; пути и способы регуляции их превращений; энергетическое обеспечение процессов, происходящих в клетке и в организме.

Становление биохимии как науки произошло на рубеже XIX и XX веков, хотя истоки биохимических знаний обнаружены еще в трудах ученых античного периода, а первые сведения о составе растительных и животных тканей начали появляться в средние века. В наши дни из биохимии уже выделились биоорганическая и бионеорганическая химия.

В начале XX века химик, минералог и кристаллограф Владимир Иванович Вернадский (1863–1945) разработал основы геохимии – науки о распространенности и миграции химических элементов на Земле. С одной стороны, геохимия широко использует достижения физики и химии, новейшие методы анализа и представления о строении вещества, с другой – огромный материал, накопленный геологическими науками, в частности, минералогией.

Наряду с физической химией возникла химическая физика, изучающая физические законы, которые управляют строением и превращениями химических веществ.

Особенности развития химии в ХХ веке во многом обусловлены достижениями физики в конце XIX века. Открытие рентгеновских лучей, радиоактивности, электрона и развитие квантовой теории привели к открытию радиоактивных элементов, новым представлениям о строении атома и природе химической связи. В ХХ веке было синтезировано 23 новых химических элемента, не найденных в природе, в том числе находящихся в Периодической системе после урана.

Дальнейшее развитие получил органический синтез. Во второй половине ХХ века искусственным путем были получены такие сложные природные вещества как хлорофилл и инсулин. Современная химия стала величайшей «производительной силой». Это выражается не только в многотоннажном производстве разнообразных химических продуктов. Стремительно растет число новых химических соединений, главным образом, органических.

Еженедельно в мире синтезируется не менее 10 тысяч новых веществ. Естественно, лишь немногие из них вызывают интерес и находят практическое применение, но ведь никто не знает, какое именно вещество понадобится завтра. Так что классическое определение химии может быть расширено: химики не только изучают вещества и их превращения, но и постоянное получают новые, ранее неизвестные. Постоянно разрабатываются новые химические материалы, необходимые для современной промышленности, техники, медицины и других сфер человеческой деятельности.

3.2.4. Закон сохранения энергии

Любая частица обладает энергией, обусловленной как её движением, так и положением в пространстве. Соответственно мы говорим о кинетической и потенциальной энергии. Частица, находящаяся в гравитационном поле Земли, обладает потенциальной энергией, зависящей от её высоты. Аналогично деформированная пружина обладает потенциальной энергией, зависящей от степени её сжатия и т. д.

Движущаяся частица обладает кинетической энергией, причем, чем быстрее она движется, тем больше энергия. Покоящаяся частица не имеет кинетической энергии.

Наиболее важное свойство полной энергии тела или частицы (суммы её потенциальной и кинетической энергии) - её сохраняемость и неизменность в отсутствие действия внешних сил. В этом сущность закона сохранения энергии[33].

Закон сохранения энергии имеет всеобъемлющее значение. Он применим ко всем без исключения явлениям природы. Энергия тел зависит от их скоростей, положения, температуры, формы, химического состава и т. д. Изменение энергии тел происходит либо за счёт работы, совершаемой этими телами, либо за счёт передачи энергии другим телам. Если мы рассматриваем все тела, участвующие в процессе, то полная энергия их остаётся неизменной. Самым существенным в этом законе является необходимость учитывать все тела, участвующие в рассматриваемых процессах. Как правило, сделать это очень трудно. Кажущиеся отступления от этого закона объясняются недостаточно строгим учётом всех происшедших изменений[34].

Всякий процесс, происходящий в природе, можно рассматривать как превращение отдельных видов энергии друг в друга. Установление закона сохранения и превращения энергии означает выработку представления о различных видах энергии, об их материальной сущности. Закон сохранения энергии связан с несотворимостью и неуничтожимостью движения. Между качественно различными видами движения существует количественное отношение, общей мерой которого является энергия - свойство качественно различных форм движения материи переходить друг в друга в строго эквивалентных количествах.

Энергия «вообще» не что иное, как абстракция, так как в действительности существуют различные виды движения и энергии, а не энергия сама по себе. Например, энергия потенциальная, кинетическая, тепловая, упругости, электрическая, химическая, излучения, ядерная и т. д. Сущность переноса энергии в переносе материального движения на основе закона сохранения и превращения. Перенос характеризуется импульсом mv. Французский философ и математик Анри Пуанкаре сказал об энергии следующее: «Так как мы не в силах дать общего определения энергии, принцип сохранения её попросту означает, что существует нечто, остающееся постоянным. Поэтому, к каким бы новым представлениям о мире не привели нас будущие эксперименты, мы заранее знаем: в них будет нечто остающееся постоянным, что можно назвать энергией».

Разновидностью закона сохранения энергии является закон сохранения массы вещества. Сохранение веществ в биосферных процессах, в географической оболочке означает, что число атомов не меняется и масса каждого атома как мера его инертных и гравитационных свойств постоянна. В химических, биологических, тепловых, механических, электрических, магнитных явлениях - там, где не происходит взаимопревращения элементарных частиц, действует закон сохранения массы.

В процессах ядерных превращений изменение в системе масса - поле действует вариант этого закона: закон сохранения полной массы системы. Закон всемирного тяготения привёл к понятию гравитационной массы. Механика Ньютона ввела понятие инертной массы. Кстати, одной из загадок природы является равенство гравитационной и инертной масс. В классической механике масса тела величина постоянная. В релятивистской механике любая масса зависит от скорости движения. В ней различают «массу покоя» и «массу движения». Все элементарные частицы по массе можно разбить на две группы: имеющие и не имеющие массу покоя. Частицы, не имеющие массы покоя, могут двигаться только со скоростью света. Определений понятия «масса» много, но общепризнанное отсутствует. В основе определения массы понятие веса: иметь массу означает быть тяжёлым и инертным.

3.3. Электромагнитная теория

История открытия электричества. ô М. Фарадей: исследования электромагнетизма, учение об электромагнитном поле, законы электролиза. ô Заряд и поле. Закон сохранения электрического заряда. ô Проводники, полупроводники и диэлектрики. Электрический ток. ô Электромагнитное взаимодействие. Электромагнитная теория поля (Дж. Максвелл).

 

Трудно даже перечислить все проявления электрических (точнее, электромагнитных) сил. Они определяют устойчивость атомов, объединяют атомы в молекулы, обусловливают взаимодействие между атомами и молекулами, приводящее к образованию конденсированных (жидких и твердых) тел. Все виды сил упругости и трения также имеют электромагнитную природу. Велика роль электрических сил в ядре атома. В ядерном реакторе и при взрыве атомной бомбы именно эти силы разгоняют осколки ядер и приводят к выделению огромной энергии. Наконец, взаимодействие между телами осуществляется посредством электромагнитных волн света, радиоволн, теплового излучения и т. д.

3.3.1. История открытия электричества

Открытие электрических явлений легенда приписывает мудрейшему из мыслителей древней Греции Фалесу, жившему более двух тысячелетий назад. Еще в те времена в окрестностях древнегреческого города Магнезия люди находили на берегу моря камешки, притягивавшие легкие железные предметы. По имени этого города их назвали магнитами (оттуда пришло к нам слово «магнит»).

Фалес же находил и другие, не менее таинственные камешки, к тому же красивые и легкие. Эти привлекательные дары моря не притягивали, как магниты, железных предметов, но обладали не менее любопытным свойством: если их натирали шерстяной тряпочкой, то к ним прилипали пушинки, легкие кусочки дерева, травы. Такие камешки, выбрасываемые приливами и волнами морей, мы сейчас называем янтарем. Древние же греки янтарь называли «электроном». Отсюда и образовалось слово «электричество».

Но ни древнегреческие, ни другие мыслители и философы на протяжении многих столетий не могли объяснить эти свойства. В XVII веке немецкому ученому Отто Герике удалось создать электрическую машину, извлекавшую из натираемого шара отлитого из серы, значительные искры, уколы которых могли быть даже болезненными. Однако разгадка тайн «электрической жидкости», как в то время называли это электрическое явление, не была тогда найдена. В середине XVII в. в Голландии, в Лейденском университете, ученые под руководством Питера ван Мушенбрука нашли способ накопления электрических зарядов. Таким накопителем электричества была лейденская банка (по названию университета) - стеклянный сосуд, стенки которого снаружи и изнутри были оклеены свинцовой фольгой.

Лейденская банка, подключенная обкладками к электрической машине, могла накапливать и долго сохранять значительное количество электричества. Если ее обкладки соединяли отрезком толстой проволоки, то в месте замыкания проскакивала сильная искра, и накопленный электрический заряд мгновенно исчезал. Если же обкладки заряженного прибора соединяли тонкой проволокой, она быстро нагревалась, вспыхивала и плавилась, то есть перегорала, как мы часто говорим сейчас. Вывод мог быть один: по проволоке течет электрический ток, источником которого является электрически заряженная лейденская банка. Сейчас подобные приборы мы называем электрическими конденсаторами (слово конденсатор означает «сгуститель»), а их не соединяющиеся между собой полоски фольги - обкладками конденсаторов.

Более совершенный, а главное почти непрерывный источник электрического тока изобрел в конце XVIII века итальянский физик Александр Вольта. Между небольшими дисками из меди и цинка он помещал суконку, смоченную раствором кислоты. Пока прокладка влажная, между дисками и раствором происходит химическая реакция, создающая в проводнике, соединяющем диски, слабый электрический ток. Соединяя пары дисков в батарею, можно было получать уже значительный электрический ток. Такие батареи называли вольтовыми столбами. Они-то и положили начало электротехнике.

Первый электромагнит, основные черты которого сохранились во многих современных электрических приборах, например в электромагнитных реле, излучателях головных телефонов, изобрел английский ученый Стерджен в 1821 г. А спустя два десятилетия после этого события французский физик Андре Ампер сделал новое, исключительно важное по тому времени открытие. Он опытным путем установил, что два параллельно расположенных проводника, по которым течет ток, способны совершать механическую работу.

В первой половине прошлого столетия ценнейший вклад в науку внес английский физик-самоучка Майкл Фарадей. Изучая связь между электрическим током и магнетизмом, он открыл явление электромагнитной индукции. Опытным путем он обнаружил, что можно передавать переменный ток из катушки в катушку на расстояние без какой-либо прямой электрической связи между ними. Суть этого явления заключается в том, что переменный ток, текущий в одной из катушек, преобразуется в переменное магнитное поле, которое пересекает витки второй катушки и тем самым возбуждает в ней переменную ЭДС. На этой основе создан замечательный прибор - трансформатор, играющий очень важную роль в электротехнике и радиотехнике. В 1821 году Фарадей получил вращение проводника с током в магнитном поле, то есть создал прообраз электромотора. В 1834 г. русский академик Б. С. Якоби создал один из первых в мире электродвигателей.

Классическая теория электричества, возникшая на основе этих наблюдений и практических разработок, охватывает огромную совокупность электромагнитных процессов. Среди четырех типов взаимодействий электромагнитных, гравитационных, сильных (ядерных) и слабых, существующих в природе, электромагнитные взаимодействия занимают первое место по широте и разнообразию проявлений. В повседневной жизни, за исключением притяжения Земли и приливов в океане, человек встречается в основном только с проявлениями электромагнитных сил. В частности, упругая сила пара имеет электромагнитную природу. Поэтому смена «века пара» «веком электричества» означала лишь смену эпохи, когда не умели управлять электромагнитными силами, на эпоху, когда научились распоряжаться этими силами по своему усмотрению.

3.3.2. М. Фарадей: исследования электромагнетизма

Майкл Фарадей (1791-1867) - английский физик, член Лондонского королевского общества. Родился в Лондоне. Учился самостоятельно. В 1833-1862 был профессором кафедры химии в Королевском институте Лондона.

Фарадей в 1821 г. впервые осуществил вращения магнита вокруг проводника с током и проводника с током вокруг магнита, создав тем самым лабораторную модель электродвигателя. В этом опыте наглядно проявилась связь между электрическими и магнитными явлениями. Не случайно, что в том же году он поставил себе целью «превратить магнетизм в электричество».

В 1831 г. Фарадей открыл явление электромагнитной индукции. В последующие годы подробно изучил открытое им явление и установил законы электромагнитной индукции. Используя огромный экспериментальный материал, Фарадей доказал тождественность известных тогда видов электричества: «животного», магнитного, термоэлектричества. Стремление выяснить природу электрического тока привело его к экспериментам по прохождению тока через растворы кислот, щелочей, солей. Результатом этих исследований было открытие в 1833 г. законов электролиза (законы Фарадея). Кроме большого практического значения, эти законы стали также существенным аргументом в пользу дискретного характера электричества.

В 1837 Фарадей обнаружил влияние диэлектриков* на электрическое взаимодействие (поляризацию диэлектриков) и ввел понятие диэлектрической проницаемости. Высказал мысль о распространении электрического и магнитного взаимодействия через промежуточную среду. В 1843 г. экспериментально доказал закон сохранения электрического заряда. Был популяризатором физики, в частности широко известна его книга «История свечи», переведенная почти на все языки мира.

Он ввёл понятия подвижность, катод*, анод*, ионы*, электролиз*, электролиты*, электроды*. Изобрел вольтметр. В 1845 открыл диамагнетизм* и в 1847 – парамагнетизм*. Обнаружил в 1845 г. явление вращения плоскости поляризации* света в магнитном поле (эффект Фарадея). Последнее было первым доказательством связи между светом и магнетизмом и положило начало магнитооптике.

Одним из важнейших заслуг Фарадея является введение понятия поля и создание учения об электромагнитном поле. В 1846 он высказал идею об электромагнитной природе света. Решительный поворот к теории близкодействия был сделан М. Фарадеем в 30е годы XIX в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде, в мировом эфире. Фарадей был первым, кто стал рассматривать силовые линии как наглядное отображение реальных процессов, происходящих в пространстве вблизи наэлектризованных тел или магнитов. Распределение силовых линий, по Фарадею, даёт картину электрического поля вблизи зарядов или магнитного поля вблизи магнитов и проводников.

Заряд и поле. Закон сохранения электрического

заряда

Заряд следует рассматривать как количественную меру способности тела к электромагнитным взаимодействиям. Электрический заряд - вторая (после массы) важнейшая характеристика элементарных частиц, определяющая их поведение в окружающем мире. Введение зарядов двух знаков означает, что заряженные частицы могут, как притягиваться, так и отталкиваться друг от друга. Ни положительные, ни отрицательные заряды не создаются в телах, например, при трении. Они присутствуют в них всегда и обнаруживают себя только в процессе электризации, когда положительные и отрицательные заряды разделяются и начинают взаимодействовать. Процесс электризации представляет собой либо отделение, либо перенесение на тело электронов или ионов. Понятно, что при электризации одного тела должен всегда возникать заряд и на каком - либо другом теле, одинаковый по величине, но противоположный по знаку.

Закон сохранения электрического заряда утверждает о его неуничтожимости и несотворимости - алгебраическая сумма электрических зарядов в замкнутой системе остаётся постоянной при любых процессах, происходящих в ней.

Для более глубокого понимания электрических явлений необходимо знать количественный закон взаимодействия электрических зарядов, то есть понимать, как зависит величина силы, действующей между заряженными телами, от зарядов на них и от расстояния между ними. Это понимание даёт нам закон Кулона, который гласит: сила взаимодействия двух точечных зарядов направлена вдоль прямой линии, соединяющей заряды. Её величина прямо пропорциональна произведению обоих зарядов и обратно пропорциональна квадрату расстояния между ними.

В зависимости от величины заряда и формы заряженного тела действие его в различных точках пространства будет различным. Поэтому для полной характеристики заряда надо знать, какое действие он производит во всевозможных точках окружающего пространства или надо знать электрическое поле, которое возникает вокруг заряда. Таким образом, понятием «электрическое поле» мы обозначаем пространство, в котором проявляются действия электрического заряда. Если имеется не один, а несколько расположенных в различных местах, то в любой точке окружающего пространства проявится совокупность действия этих зарядов, то есть создаваемое ими электрическое поле.

Заряженные частицы взаимодействуют друг с другом на расстоянии в пустом пространстве. Возникает вопрос о механизме возникновения этих сил. Достаточно естественной выглядит полевая концепция, согласно которой каждый заряд создает вокруг себя в пространстве «нечто», называемое электрическим полем, а действующая на другой заряд сила возникает вследствие его взаимодействия с полем в той точке пространства, где он находится. Таким образом, поле выступает в роли переносчика взаимодействия между заряженными частицами.

В пользу объективного существования поля свидетельствуют следующие факты:

1. Конечность скорости распространения изменения поля, вызванного изменением его источника.

2. Наличие энергии в «пустом» пространстве, заполненным полем, которое в принципе может быть зарегистрировано не только при помощи электростатических взаимодействий.

3. Возможность существования поля после исчезновения его источника.

Введенная для электромагнитных взаимодействий, полевая концепция оказалась весьма удобной. Она позволяет разбивать задачу о взаимодействии тел на две: расчет поля в точке расположения частицы и расчет силы, возникающей при ее взаимодействии с этим полем. В настоящее время понятие поля используется для описания всех типов фундаментальных взаимодействий.

Проводники, полупроводники и диэлектрики.

Электрический ток

Не в каждом теле есть условия для прохождения электрического тока. Дело в том, что атомы и молекулы различных веществ обладают неодинаковыми свойствами. В металлах, например, электроны легко покидают оболочки и беспорядочно, хаотично движутся между атомами. В металлах особенно много свободных электронов. По существу, металл состоит из положительных ионов, расположенных в определенном порядке, пространство между которыми заполнено свободными электронами. В металле невозможно различить, какой электрон к какому из атомов относится, они сливаются в единое электронное облако. Огромное количество свободных электронов в металлах создает в них наиболее благоприятные условия для электрического тока. Нужно только хаотическое движение электронов упорядочить, заставить их двигаться в одном направлении.

В некоторых телах и веществах почти нет свободных электронов, так как они прочно удерживаются ядрами. У молекул и атомов таких тел трудно «отобрать» или «навязать» им лишние электроны. В таких телах нельзя создавать электрический ток. В них отрицательно заряженные электроны крепко связаны электрическими силами с положительными ядрами, и внешнее поле не способно привести к значительному перераспределению зарядов. В таких веществах электрическое поле оказывается меньшим по сравнению с полем, которое создавали бы свободные заряды в вакууме.

Тела и вещества, в которых можно создавать электрический ток, называют проводниками. Те же тела и вещества, в которых его создать нельзя, называют диэлектриками или непроводниками тока.

К проводникам, кроме металлов, относятся также уголь, растворы солей, кислоты, щелочи, живые организмы и многие другие тела и вещества. Причем в растворах солей электрический ток создается не только электронами, но и положительными ионами.

Диэлектриками являются воздух, стекло, парафин, слюда, лаки, фарфор, резина, пластмассы, различные смолы, маслянистые жидкости, сухое дерево, сухая ткань, бумага и другие вещества. Фарфоровыми, например, делают изоляторы для электропроводки, лаки используют для покрытия проводов, чтобы изолировать провода друг от друга и от других предметов.

Но есть еще большая группа веществ, называемых полупроводниками. К полупроводникам, в частности, относятся германий и кремний. По электропроводности они занимают среднее место между проводниками и непроводниками. Считавшиеся когда-то непригодными для практических целей, сейчас они стали основным материалом для производства современных полупроводниковых приборов, например транзисторов.

Для того чтобы заставить упорядоченно двигаться в одном направлении свободные электроны в нити накала электрической лампочки, нужно создать в проводнике электрическое поле, подключив, например, проводник к гальваническому элементу. Элемент состоит из цинковой и медной пластинок, называемых электродами, которые помещены в электролит - раствор соли или кислоты, допустим, серной. В результате химической реакции, происходящей между электродами и электролитом, на цинковом электроде образуется избыток электронов, и он приобретает отрицательный электрический заряд, а на медном, наоборот недостаток электронов, и он приобретает положительный заряд. При этом между разноименными электрическими зарядами такого источника тока возникает электрическое поле, действует электродвижущая сила (сокращенно ЭДС), или напряжение. Как только проводник окажется подключенным к полюсам элемента или батареи, в нем возникнет электрическое поле, под действием которого электроны будут двигаться туда, где их недостаток, то есть от отрицательного полюса через проводник к положительному полюсу источника электрической энергии. Это и есть упорядоченное движение электронов в проводнике - электрический ток. Ток течет через проводник потому, что в получившейся цепи (положительный полюс элемента, проводники, отрицательный полюс элемента, электролит) действует электродвижущая сила.

Установлено, что электроны в проводнике движутся от отрицательного полюса (где избыток их) к положительному (где недостаток в них), однако и сейчас, как в прошлом веке, принято считать, что ток течет от плюса к минусу, т. е. в направлении, обратном движению электронов. Условное направление тока, кроме того, положено учеными в основу ряда правил, связанных с определением многих электрических явлений. В то же время такая условность никаких особых неудобств не создает, если твердо помнить, что направление тока в проводниках противоположно направлению движения электронов. В тех же случаях, когда ток создается положительными электрическими зарядами, например, в электролитах химических источников постоянного тока, таких противоречий вообще нет, потому что направление движения положительных зарядов совпадает с направлением тока.








Дата добавления: 2016-01-16; просмотров: 739;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.028 сек.