СТРОЕНИЕ АТОМА. ПЕРИОДИЧЕСКАЯ СИСТЕМА.
ХИМИЧЕСКАЯ СВЯЗЬ
Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. (А.Беккерель, 1896 г.). Последовавшее за этим установление природы α-, β-, и γ-лучей, образующихся при радиоактивном распаде (Э.Резерфорд, 1899—1903 гг.), открытие ядер атомов (Э.Резерфорд, 1909—1911 гг.), определение заряда электрона (Р.Милликен, 1909 г.) позволили Э.Резерфорду в 1911 г. предложить одну из первых моделей строения атома.
Модель Резерфорда (1911) - планетарная модель. Теория Бора. В 1913 г. как и Резерфорд, он считал, что электроны двигаются вокруг ядра подобно планетам, движущимся вокруг Солнца. Бор предположил, что электрон в атоме не подчиняется законам классической физики. Согласно Бору, излучение или поглощение энергии определяется переходом из одного состояния, например с энергией Е1, в другое — с энергией Е2, что соответствует переходу электрона с одной стационарной орбиты на другую. Квантовая модель строения атома. В последующие годы некоторые положения теории Бора были переосмыслены и дополнены. Теорию Бора сменила квантовая теория, которая учитывает волновые свойства электрона и других элементарных частиц, образующих атом. В основе современной теории строения атома лежат следующие основные положения:
1. Электрон имеет двойственную (корпускулярно-волновую) природу. Он может вести себя и как частица, и как волна, подобно частице, электрон обладает определенной массой и зарядом; в то же время, движущийся электрон проявляет волновые свойства, например, характеризуется способностью к дифракции.
2. Для электрона невозможно одновременно точно, измерить координату и скорость. Чем точнее мы измеряем скорость, тем больше неопределенность в координате, и наоборот.
3. Электрон в атоме не движется по определенным траекториям, а может находиться в любой части около ядерного пространства, однако вероятность его нахождения в разных частях этого пространства неодинакова. Пространство вокруг ядра, в котором вероятность нахождения электрона достаточно велика, (≈ 90%) называют атомной орбиталью (АО). На схемах атомная орбиталь обычно изображается как ячейка: О или .
4. Энергия испускается и поглощается телами отдельными порциями – квантами.
5. Ядра атомов состоят из протонов и нейтронов (общее название — нуклоны). Число протонов в ядре равно порядковому номеру элемента, а сумма чисел протонов и нейтронов соответствует его массовому числу.
Сформулированные выше положения составляют суть новой теории, описывающей движение микрочастиц, — квантовой механики. Наибольший вклад в развитие этой теории внесли Л. Де Бройль, В.Гейзенберг, Э.Шредингер, П.Дирак. Впоследствии каждый из этих ученых был удостоен Нобелевской премии.
Квантовые числа электронов:Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (ml) и спинового (ms). Первые три характеризуют движение электрона в пространстве, а четвертое – вокруг собственной оси.
Главное квантовое число (n)oпределяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3 …) и соответствует номеру периода. Например: Элемент кадмий Cd расположен в пятом периоде, значит n = 5. В его атоме электроны раcпределены по пяти энергетическим уровням (n = 1, n = 2, n = 3, n = 4, n = 5); внешним будет пятый уровень (n = 5).
Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n – 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l – подуровнем.
Для
l=0 s- подуровень, s- орбиталь – орбиталь сфера, максимальное количество электронов равно 2.
L=1 p- подуровень, p- орбиталь – орбиталь гантель, максимальное количество электронов равно 6.
L=2 d- подуровень, d- орбиталь – орбиталь сложной формы, максимальное количество электронов равно 10.
f-подуровень, f-орбиталь – орбиталь еще более сложной формы, максимальное количество электронов равно 14.
Магнитное квантовое число (ml) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от –l до +l, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве.
Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве.
Для p- орбитали (l = 1) – три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1.
Для d- орбитали (l = 2) – пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2.
Таким образом, на s- подуровне – одна, на p- подуровне – три, на d- подуровне – пять, на f- подуровне – 7 орбиталей.
Спиновое квантовое число (ms) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие противоположным направлениям вращения.
Дата добавления: 2016-01-09; просмотров: 1217;