Теорема об изменении главного момента количества движения системы материальных точек.

Напомним, что момент количества движения системы или кинетический момент определяется выражением

,

Продифференцируем написанное выражение по времени

Первое слагаемое равно нулю как векторное произведение равных векторов (ведь ), а второе, с учётом (3.14) получается равным

В правой части первое слагаемое – главный вектор внешних сил, а второе- главный вектор внутренних сил, который равен нулю. Итак, окончательно имеем

(3.21)

Это соотношение выражает теорему об изменении кинетического момента: векторная производная по времени от главного момента количества движения системы равна главному моменту внешних сил, приложенных к системе. Равенство нулю главного момента внутренних сил приводит к заключению, что внутренние силы не могут влиять на измене­ние кинетического момента системы.

Формула (3.21) оказываются существенно необходимой при изучении динамики враща­тельных движений твердого тела или системы тел. С помощью этих двух фундаментальных законов

(3.22)

можно получить дифференциальные уравнения движения твёрдого тела и системы тел. В разделе статика указывалось, что необходимыми и достаточными условиями равновесия являлись равенство нулю главного вектора и главного момента сил. Уравнения (3.22) можно переписать в форме, похожей на уравнения статики виде

Эти уравнения называютсяуравнениями кинетостатики, где индекс a обозначает активные силы и моменты активных сил, «r»– силы реакций и моменты сил реакций, а индекс « »- силы инерции и моменты сил инерции, которые равны

,








Дата добавления: 2016-01-07; просмотров: 738;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.