Уравнения плоского движения.

В предыдущей главе были рассмотрены два наиболее простых случая движения твердого тела: поступательное и вращательное вокруг неподвижной оси. Перейдем теперь к изучению более сложного случая движения – плоского - параллельного движения твердого тела, или (сокращённо) плоского движения. Под плоским движением понимают движение, при котором все точки твердого тела, расположенные в плоскостях, параллельных некоторой неподвижной плоскости, во все время движения остаются в тех же плоскостях. Если разбить мысленно тело на плоские сечения, параллельные заданной плоскости, то эти сечения будут скользить каждое в своей плоскости. Этот случай движения имеет большое техническое значение; ме­ханизмы, встречающиеся в технике, за немногочисленными исклю­чениями, представляют системы твердых тел, совершающих плоское движение. Вращение тела вокруг неподвижной оси является частным случаем плос

…Рис. 28 кого движения; движение колеса по прямолинейному пути дает еще один пример; плоское движение совершают также механизмы для вычерчивания разных кривых (эллипсограф, конхоидограф), всевозможные кулисные механизмы, эпициклические механизмы, применяемые в редукторах скоро стей, и т. д. Пусть тело А (рис. 28) совершает движение, параллельное пло­скости П. Проведем мысленно в теле ряд плоскостей П', II", ... , параллельных П. Тело разобьется на ряд плоских фигур S', S",… . Движение одной такой плоской фигуры вполне опреде­ляет движение всего твердого тела, так как плоскости, которыми мы разбили твердое тело, друг с другом не

Рис 29 изменно связаны и не могут двигаться друг по отношению к другу. Если мы возьмем в какой-нибудь фигуре S' точку М и восста­вим в ней перпендикуляр к плоскости фигуры S, то точки М и М" фигур S' и S", лежащие на этом перпендикуляре, будут иметь одинаковое движение, т. е. будут описывать одинаковые траектории, иметь одинаковые скорости, одинаковые ускорения. Таким образом, можно значительно упростить изучение плоскою движения твердого тела — достаточно изучить движение одной пло­ской фигуры в ее плоскости. Следует здесь отметить, что при плоском движении тела все перемещения, скорости и ускорения точек должны лежать в плоскости фигуры. Возьмем две системы осей в плоскости движения фигуры: одну систему Оху неподвижную, другую - О'х'у', неизменно связанную с движущейся фигурой (рис. 29). Положение точки М фигуры в неподвижной плоскости будем определять вектор-радиусом , проведенным из начала О неподвижной системы осей; выбор рассматриваемой точки фигуры определяется указанием вектора ', проведеного из начала О' подвижной системы. Вектор-радиус начала О' относительно О обозначим через . Тогда

Проекции вектора (t) на оси х и у могут быть записаны в виде

(2.15)

Декартовы координаты х' и точки М в системе под­вижных осей остаются постоянными.








Дата добавления: 2016-01-07; просмотров: 1255;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.