Схема II. Двухопорная балка (задача № 7)

1. Построить эпюры Qy и Mx. Существенное отличие этой схемы (рис. 5.13, а) от предыдущего примера расчета (рис. 5.8, а) заключается в том, что при рассмотрении однопролетной консоль­ной балки, для определения внутренних силовых факторов с при­менением метода сечений, мы последовательно рассматривали рав­новесие той части системы, где отсутствовало опорное сечение. Данное обстоятельство позволило без предварительного определе­ния опорных реакций, вычислить значения внутренних усилий. Так как этот прием, в данном случае, нереализуем, поэтому предвари­тельно необходимо определить полную систему внешних сил, кото­рая включает заданную систему и все опорные реакции.

Определение опорных реакций

При общем случае нагружения в заданной системе возникают три опорные реакции. Однако, учитывая особенности характера на­гружения, т.е. все внешние силы направлены по оси y, поэтому можно утверждать, что горизонтальная опорная реакция в опорном сечении А в данном случае равна нулю. Вертикальные опорные реакции могут быть определены из условий SMA = 0; SMB = 0.

Необходимым и достаточным условием проверки правильности определения вертикальных опорных реакций является Sy = 0, т.к. это уравнение статики, применительно к рассматриваемой системе, которое содержит все искомые опорные реакции.

Из SMA = 0 получим:

SMA = -Р×1 + q×5×4,5 - m - RB×6 = 0,

откуда

кН.

Из уравнения SMB = 0 будем иметь:

SMB = -P×7 - m - q×5×1,5 + RA ×6 =0; RA = 40 кН.

Опорные реакции RA и RB получились положительными. Это означает, что выбранные направления совпадают с их действитель­ными направлениями. После определения опорных реакций сле­дует провести проверку правильности их вычисления.

Рис. 5.13

Sy = -P - q×5 + RA + RB = 0; -10 - 20×5 + 40 + 70 = 0;

-110 + 110 = 0; 0 = 0.

Удовлетворение этого уравнения говорит о правильности вы­числения величин и направления опорных реакций.

Определение количества участков

Учитывая, что границами участков являются точки приложения внешних сил и опорных реакций, а также сечения, где распределенная нагрузка меняется скачкообразно. Поэтому заданная балка имеет че­тыре участка: I участок - КА; II участок - АС; III участок - СВ и IV участок - ВD (рис. 5.13, б).

Составление аналитических выражений Qy, Mx и определение значений их в характерных сечениях каждого участка

Поместив начало системы координат в центре тяжести крайнего левого поперечного сече­ния балки, и рассекая ее в пределах участка I, рассмотрим равнове­сие левой части балки длиной z1 (рис. 5.14, а). Составив уравнения равновесия Sy = 0 и для этой части, найдем аналитиче­ские выражения изменения Qy и Mx на участке I, где z1 изменяется в пределах 0 £ z1 £ 1 м:

Рис. 5.14

Sy = 0, - - P = 0, = -P (постоянная величина);

, - - P×z1 = 0, = -P×z1 (уравнение прямой линии).

Знак “минус” у говорит о том, что в этом сечении возни­кает поперечная сила, действующая в направлении, обратном показанному на рис. 5.14, а, а у - что в сечении будет возникать изгибающий момент, растягивающий верхние волокна, а не ниж­ние, как показано на рис. 5.14, а. Для определения величин и в характерных сечениях этого участка подставим значения z1 в полученные аналитические выражения:

при z1 = 0 = -10 кН, = -10×0 = 0;

при z1 = 1 м = -10 кН, = -10×1 = -10кН×м.

Проведя сечение в пределах участка II, рассмотрим равновесие левой отсеченной части балки (рис. 5.14, б) и из уравнений равно­весия Sy = 0 и найдем аналитические выражения для и на этом участке, где z2 изменяется в пределах 1 м £ £ z2 £ 3 м:

Sy = 0, - - P + RA = 0, = RA - P (постоянная величина);

, - - P×z2 + RA (z2 - 1) = 0,

= RA (z2 - 1) - P×z2 (уравнение прямой линии).

Подставив в полученные выражения значения z2 , соответству­ющие граничным сечениям участка II, определим величины и , возникающие в этих сечениях:

при z2 = 1 м = 40 - 10 = 30 кН,

= 40×(1 - 1)-10×1 = -10 кН×м;

при z2 = 3 м = 30 кН, = 40×(3 - 1) - 10×3 = 50 кН×м.

Сделав сечение в пределах участка III, составив и решив урав­нения равновесия Sy = 0 и для левой отсеченной части (рис. 5.15), получим аналитические выражения изменения Qy и Mx на участке III, где z3 изменяется в пределах 3 £ z3 £ 7 м:

Sy = 0, - - P + RA - q×(z3 - 3) = 0,

= RA - P - q×(z3 - 3) -уравнение прямой;

, ,

- уравнение параболы.

Рис. 5.15

Теперь найдем и в граничных сечениях С и В уча­стка III: при z3 = 3 м = 40 - 10 -
- 20×(3- 3) = 30 кН,

= 40×(3 - 1)-10×3 - = -50 кН×м;

при z3 = 7 м = 40 - 10 - 20×(7 - 3) = -50 кН,

= 40×(7 - 1) - 10×7 - = 10 кН×м.

Как видно, поперечная сила на этом участке принимает в некотором сечении нулевое значение и меняет знак при прохож­дении через него (рис. 5.13, в). Поэтому в сечении, где =
= 0, будет экстремальное значение изгибающего момента. Для его определения найдем величину z0 , при котором = 0. Приравняв выражение для к нулю, получим:

RA -P - q×(z0 - 3) = 0, м.

Подставив найденное значение z0 = 4,5 м в выражение для , найдем величину экстремального значения изгибающего мо­мента на этом участке Mmax = 72,5 кН×м.

Для получения аналитических выражений изменения Qy и Mx на участке IV целесообразно начало координат перенести в сечение D и рассматривать равновесие правой отсеченной части, т.к. в этом случае вследствие меньшего количества внешних сил, приложенных к правой части балки, аналитические выражения будут проще по своему виду, а вычисление ординат менее трудоемко.

Рис. 5.16

Аналитические выражения и на участке IV (рис. 5.16) (0 £ z4 £ £ 1 м) получим из следующих уравне­ний:

Sy = 0, - - q×z4 = 0, = q×z4 - (прямая линия);

, , - (парабола).

В граничных сечениях D и В участка IV ординаты эпюр Qy и Mx :

при z4 = 0 = 0, = 20 кН×м;

при z4 = 1 м = 20×1 =20 кН, кН×м.

Так как величина на участке IV изменяется по закону квадратной параболы, то для уточнения ее очертания надо опреде­лить ординату эпюры Mx в каком-нибудь промежуточном сечении. Например, при z4 = 0,5 м, где ордината будет равна:

кН×м.

Построение эпюр Qy и Mx для всей балки

Откладывая перпендикулярно от оси абсцисс в удобном для пользования масштабе значения Qy и Mx , возникающие в харак­терных и промежуточных сечениях каждого участка, и соединяя концы полученных ординат линиями, соответствующими законам изменения Qy и Mx на этих участках, строим эпюры Qy и Mx для всей балки (рис. 5.13, в, г).

2.1. Руководствуясь эпюрой Mx показать приблизи­тельный вид изогнутой оси балки. Анализируя эпюру Mx (рис. 5.13, г) видим, что на участке КО растянуты верхние волокна, и поэтому на этом участке изогнутая ось балки будет иметь вы­пуклость вверх. На участке ОD растянуты нижние волокна, и изо­гнутая ось балки будет иметь выпуклость вниз. Вследствие этого под т. О, где Mx = 0, будет точка перегиба. Учитывая все сказанное и то, что прогибы в опорных сечениях равны нулю, строим при­близительный вид изогнутой балки (рис. 5.13, д).

2.2. Подбор поперечного сечения балки. Опасным явля­ется сечение Е, где возникает наибольший по абсолютной величи­не Mmax = 72,5 кН×м. Двутавровое сечение балки подбираем из ус­ловия прочности при изгибе при расчетном сопротивлении мате­риала RH = 200×103 кН/м2 (сталь):

.

Откуда требуемый момент сопротивления Wx равен:

м3 .

По сортаменту (ГОСТ 8239-72) принимаем двутавр № 27 с Wx = 37,1×10-5 м3. В этом случае при , что%проверке прочности получа­ется недонапряжение, но оно будет меньше 5 допускается СНиП при практических расчетах.








Дата добавления: 2015-12-29; просмотров: 1312;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.