МАТЕРИАЛЫ С ВЫСОКОЙ ПРОВОДИМОСТЬЮ

К материалам этого типа предъявляются следующие требования: минимальное значение удельного электрического сопротивления; до­статочно высокие механические свойства (главным образом предел прочности при растяжении и относительное удлинение при разры­ве); способность легко обрабатываться, что необходимо для изготов­ления проводов малых и средних сечений; способность образовывать контакты с малым переходным сопротивлением при пайке, сварке и других методах соединения проводов; коррозионная стойкость.

Основным является требование максимальной удельной прово­димости материала. Однако электропроводность металла может снижаться из-за загрязняющих примесей, деформации металла, возникающей при штамповке или волочении, что приводит к разру­шению отдельных зерен металла. Влияние деформаций металла на его электропроводность устраняется при отжиге, во время которо­го уменьшается число дефектов в металле и увеличиваются средние размеры кристаллов металла. В связи с этим проводниковые материалы используют в основном в отожженном (мягком) состоянии. Наиболее распространенными современными материалами высокой проводимости являются цветные металлы (медь, алюминий, цинк, олово, магний, свинец) и черные металлы (железо), которые применяются в чистом виде. Еще шире используют сплавы этих металлов, так как они обладают лучшими свойствами и более дешевы по сравнению с чистыми металлами. Однако цветные металлы и их сплавы экономически целе­сообразно использовать в тех случаях, когда необходимые свойства изделий нельзя получить, применяя черные металлы, чугун и сталь. Для улучшения свойств цветные сплавы подвергаются термической обработке - отжигу, закалке и старению. Отжиг влияет на мягкость материала и уменьшает напряжения в отливках. Закалка и старение повышают механические свойства.

Медь и ее сплавы

Медь является одним из самых распространенных материа­лов высокой проводимости. Она обладает следующими свойствами:

малым удельным электрическим сопротивлением (из всех метал­лов только серебро имеет удельное электрическое сопротивление на несколько процентов меньше, чем у меди);

высокой механической прочностью;

удовлетворительной коррозионной стойкостью (даже в услови­ях высокой влажности воздуха медь окисляется значительно мед­леннее, чем, например, железо; интенсивное окисление меди проис­ходит только при повышенных температурах);

хорошей паяемостью и свариваемостью;

хорошей обрабатываемостью (медь прокатывается в листы и ленты и протягивается в проволоку).

Получение меди

Медь получают чаще всего в результате переработки сульфид­ных руд. Примеси снижают электропроводность меди. Наиболее вредными из них являются фосфор, железо, сера, мышьяк. Содер­жание фосфора примерно 0,1% увеличивает сопротивление меди на 55%. Примеси серебра, цинка, кадмия дают увеличение сопро­тивления на 1...5%. Поэтому медь, предназначенная для электро­технических целей, обязательно подвергается электролитической очистке. Катодные пластины меди, полученные в результате элект­ролиза, переплавляют в болванки массой 80...90 кг, которые про­катывают и протягивают, создавая изделия необходимого попереч­ного сечения.

Электролиз – совокупность процессов электрохимического окисления – восстановления, происходящих на погруженных в электролит электродах при прохождении электрического тока

Марки меди

В качестве проводникового материала используют медь марок Ml и МО.

Медь марки Ml содержит 99,9% меди, не более 0,1% примесей, в общем количестве которых кислорода должно быть не более 0,08%о.

Медь марки МО содержит примесей не более 0,05%, в том числе кислорода не более 0,02%. Благодаря меньшему со­держанию кислорода медь марки МО обладает лучшими механи­ческими свойствами, чем медь марки Ml.

Медь марки MB медь, выплавляемая в вакуумных индукционных печах содержит не более 0,01 % примесей.

При холодной протяжке получают твердую (твердотянутую) медь (МТ), которая обладает высоким пределом прочности при растяжении, твердостью и упругостью (при изгибе проволока из твердой меди несколько пружинит).

Твердую медь применяют в тех случаях, когда необходимо обес­печить высокую механическую прочность, твердость и сопротив­ляемость истиранию: для контактных проводов, шин распредели­тельных устройств, для коллекторных пластин электрических ма­шин, изготовления волноводов, экранов, токопроводящих жил ка­белей и проводов диаметром до 0,2 мм.

После отжига до нескольких сотен градусов (медь рекристаллизуется при температуре примерно 270 °С) с последующим охлажде­нием получают мягкую (отожженную) медь (ММ). Мягкая медь имеет проводимость на 3...5% выше, чем у твердой меди.

Мягкая отожженная медь служит электротехническим стандартом, по отношению к которому удельную электрическую проводимость металлов и сплавов выражают при температуре окружающей среды 20 °С. Удельная электрическая проводимость такой меди рав­на 58 мкСм/м, соответственно = 0,017241 мкОм×м при значении ТК = 4,3-10-3К-1.

Свойства медной проволоки

Параметр Марки
МТ ММ
Плотность, кг/м3 8,96×103 8,9×103
Удельное сопротивление, мкОм×м, не более 0,0179-0,0182 0,0175
Предел прочности при растяжении, Мпа, не менее 360 - 390 260 - 280
Относительное удлинение при разрыве, % 0,5 – 2,5 18 - 35

 

Применение меди

Мягкая медь широко применяется для изготовления фольги и токопроводящих жил круглого и прямоугольного сечения в кабе­лях и обмоточных проводах, где важна гибкость и пластичность (отсутствие “пружинения” при изгибе), а прочность не имеет боль­шого значения.

Медь сравнительно дорогой и дефицитный материал, поэтому она должна расходоваться экономно. Отходы меди на электротех­нических предприятиях необходимо собирать, не смешивая с дру­гими металлами и менее чистой медью, чтобы их можно было пере­плавить и снова использовать. В ряде случаев медь как проводни­ковый материал заменяют другими металлами, чаще всего алюми­нием.

Сплавы меди

В ряде случаев, когда от проводникового материала требуется не только высокая проводимость, но и повышенные механическая прочность, коррозионная стойкость и сопротивляемость истиранию, применяют сплавы меди с небольшим содержанием легирующих примесей.

Бронзы. Сплавы меди с примесями олова, алюминия, кремния, бериллия и других элементов, среди которых цинк не является ос­новным легирующим элементом, называют бронзами (табл. 3.3).

Примечание.

1. Состав кадмиевой бронзы 0,9% Cd, остальное Сu; бериллиевой - 2,25% Ве, остальное Сu; фосфористой 0,1 % Р, 7% Sn, остальное Сu.

2. В числителе данные для отожженной латуни, в знаменателе -для твердотянутой.

 

При правильно подобранном составе бронзы имеют значитель­но более высокие механические свойства, чем чистая медь (значе­ния предела прочности бронз могут доходить до 800... 1200 МПа и более). Бронзы обладают малой объемной усадкой (0,6... 0,8%) по сравнению с чугуном и сталью, у которых усадка достигает 1,5... .. .2,5%. Поэтому наиболее сложные детали отливают из бронзы.

Введение в медь кадмия дает существенное повышение механи­ческой прочности и твердости при сравнительно малом снижении удельной электрической проводимости у.

Кадмиевую бронзу МК (0,9% кадмия Cd, остальное Си) применяют для контактных проводов и коллекторных пластин осо­бо ответственного назначения, а также сварочных электродов при контактных методах сварки.

Обладая еще большей, чем кадмиевая бронза, механической прочностью, твердостью и стойкостью к механическому износу (пре­дел прочности при растяжении а до 1350 МПа) бериллиевая бронза не изменяет своих свойств до температуры примерно 250°С. Она находит применение при изготовлении ответственных токоведущих пружин для электрических приборов, щеткодержателей, токоштепсельных и скользящих контактов.

Фосфористая бронза (6,5% олова Sn, 0,15 - фосфора Р, остальное медь Си) отличается низкой электропроводимостью. Из нее изготавливают различные малоответственные токоподводящие пружины в электроприборах.

Латуни. Латуни представляют собой медные спланы, и которым основным легирующим элементом является цинк (до 43%).

Основные свойства некоторых латуней

Параметр Латунь (68%Cu, 32%Zn) Латунь (59%Cu, 40%Zn, 1%Pb)
Удельная проводимость по отношению к электротехническому стандарту меди в % 46/30 30/20
Предел прочности при растяжении, МПа 380/880 350/450
Относительное удлинение при разрыве, % 65/5 25/5

Примечание. В числителе данные для отожженной латуни, в знаменателе - для твердотянутой.

 

Латуни прочнее, пластичнее меди, обладают достаточно высо­ким относительным удлинением при повышенном пределе проч­ности на растяжение по сравнению с чистой медью, они имеют по­ниженную стоимость, так как входящий в них цинк значительно дешевле меди. Иногда для повышения коррозионной стойкости в состав сплава в небольшом количестве вводят алюминий, никель, марганец.

Латуни хорошо штампуются и легко подвергаются глубокой вытяжке (контакты термобиметаллического реле, экраны контуров, пластины воздушных конденсаторов переменной емкости, колпач­ки радиотехнических ламп).

 








Дата добавления: 2015-12-29; просмотров: 6112;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.