Уровни изучения неслественности
Главным и единственным методом изучения наследственности организмов является классический генетический (гибридологический) анализ, или, как его еще называют, формальный генетический анализ. Основы этого метода были разработаны Г. Менделем. Этот метод заключается в последовательном разложении генома анализируемого организма на группы сцепленных генов, а групп сцепления — на генные локусы с дальнейшим установлением последовательности генных локусов вдоль хромосомных пар и выяснением тонкой структуры генов.
Генетический анализ в принципе подобен химическому анализу, задача которого заключается в разложении сложных химических соединений на более простые компоненты. Однако в отличие от химического анализа, например нуклеопротеидов, расщепление которых на структурные части основано на гидролизе, классический генетический анализ основывается на расщеплении (сегрегации) и рекомбинации генов в мейозе и осуществляется путем скрещиваний особей с разными признаками и учета результатов скрещиваний.
Схема генетического анализа организмов состоит из ряда последовательных этапов, а именно:
1. Идентификация генов.
2. Установление генных локусов на хромосомных парах.
3. Установление последовательности генных локусов вдоль хромосомных пар.
4. Выяснение тонкой структуры генов.
Результаты генетического анализа оформляют путем составления генетических карт.
Одним из важнейших показателей эффективности генетического анализа является его разрешающая способность, которая в общих чертах может быть аналогизирована с разрешающей способностью оптических методов исследования. Подобно тому, как разрешающая способность оптических приборов (микроскопов) ограничена волновой природой света, разрешающая способность генетического анализа ограничивается количеством исследуемого потомства, получаемого в скрещиваниях, ибо чем большим является количество потомства, тем большей является возможность обнаружения среди них редких рекомбинантов и, следовательно, установления частоты кроссинговера.
Начиная с 1910 г., в генетике в качестве экспериментальной модели (системы) широко используют плодовую мушку Drosophila melanogaster (рис. 103). Являясь эукариотом с дифференцированными тканями, этот организм очень удобен для изучения многих вопросов наследственности.
В частности, у этого организма было идентифицировано и изучено большое количество генных и хромосомных мутаций, причем хромосомные мутации из-за больших размеров в клетках слюнной железы оказались доступными для изучения с помощью обычного микроскопа.
На этом организме была показана «мощь» генетического анализа. Однако разрешающая способность генетического анализа всегда имеет ограничения, поскольку возможность получения большого количества потомства всегда ограничена до определенных пределов даже у тех видов, у которых оно составляет сотни организмов на пару, как, например, у D. melanogaster. Поэтому у организмов, размножающихся половым путем, в том числе и у плодовой мушки возможно выполнение лишь трех первых этапов генетического анализа.
Однако изучение других генетических систем, в частности микроорганизмов, показало, что половая репродукция не является единственным путем, при котором осуществляется объединение, расщепление и рекомбинация генетических структур, происходящих от исходных (родительских) организмов. Эти процессы могут проходить и при других формах генетического обмена. У микроорганизмов (Е. coli) бактериальных вирусов (фагов) и микроскопических грибов такими формами генетического обмена являются трансформация, конъюгация и трансдукция. Общим для них в сравнении с половой репродукцией высших организмов является то, что они приводят к объединению в одной клетке родительских генов и обеспечивают их расщепление и рекомбинацию, т. е. являясь альтернативами половой репродукции, представляют собой системы рекомбинации. Поэтому генетический анализ основывается и на таких системах рекомбинации. Больше того, использование этих систем рекомбинации привело к повышению разрешающей способности генетического анализа в гигантских размерах, ибо появилась возможность оперировать с огромным количеством организмов в потомстве, а также легко осуществлять тесты комплементации, а это позволило не только создать генетические карты ряда организмов (Е. coli, В. subtilis, фаги, низшие грибы), но и изучить тонкое строение их генов.
В качестве экспериментальных моделей широко используют также дрожжи. Являясь простейшими эукариотами, эти организмы обладают всеми преимуществами бактерий. Но кроме этого, они оказались доступными для изучения на них генетики митохондрий, сплайсинга РНК, гаплои-дии и диплоидии.
Классический генетический анализ используют в генетике растений и животных, а также их культивируемых клеток. Однако по отношению к высшим организмам тех видов, которым присуще длительное время между генерациями и малое количество потомства на пару, он либо невозможен, либо очень затруднен. Из-за невозможности классического генетического анализа организмов ряда видов изучение их наследственности проводят с помощью других методов. Например, для изучения наследственности человека используют метод родословных (генеалогический анализ), цитогенетический, популяционный, близнецовый и другие современные методы (см. гл. XIII).
Длительное время для изучения генетического контроля развития животных организмов использовали D. melanogaster. Однако, начиная с 60-х гг., в качестве модельного объекта в генетике развития стали использовать круглого гельминта Caenorhabditis (рис. 104). Имея длину в 1 мм, эта нематода состоит примерно из 1000 клеток. Ее генетический аппарат представлен 6 парами гомологичных хромосом, на которых локализовано около 3000 генов. В гаплоидном состоянии геном состоит из 8´107 пар нуклеотидов.
Что касается растений, то для изучения генетики развития этих организмов используют травянистое растение Arabidopsis thaliana (рис. 105). Преимущества этого растения в качестве экспериментальной модели заключаются в том, что его легко культивировать в лабораторных условиях и что оно имеет очень короткий срок вегетации (всего лишь 5 недель). Кроме того, геном этого растения состоит из 7´107 нуклеотидных пар.
У всех этих организмов идентифицированы различные мутации, созданы их геномные библиотеки и секвенировано большинство генов. Секвенирование стало методом изучения тонкого строения генов у всех организмов.
Развитие молекулярной биологии привело к разработке методологии генетической инженерии, которая нашла исключительно широкое применение в животноводстве, растениеводстве, а также в изучении нормальной и патологической наследственности человека (см. раздел V).
Вопросы для обсуждения
1. Дайте определение наследственности и объясните, каким образом наследственность определяет непрерывность жизни?
2. Является ли изменчивость свойством живого и если да, то почему?
3. Какие формы изменчивости вы знаете?
4. Что важнее, наследственность или среда?
5. Дайте определение генотипа и фенотипа.
6. В чем заключается классический генетический анализ и применим ли он для изучения наследственности всех организмов? Каковы его возможности и ограничения?
7. Для чего используют в изучении наследственности и изменчивости экспериментальные модели?
8. Какие организмы используются в генетике в качестве моделей для изучения генетических закономерностей?
9. На каких уровнях изучают наследственность и изменчивость?
10. Каково значение молекулярно-генетических исследований наследственности и изменчивости?
11. Можно ли изучать тонкое строение генов, не прибегая к скрещиваниям?
Литература
Дубинин Н. П. Генетика. Кишинев: Штиинца. 1986. 534 стр.
Грин Н., Стаут У., Тейлор Д. Биология. М.: Мир. 1996. 386 стр.
Schleif R. Genetics and Molecular Biology. The Johns Hopkins University Press. 1993. 698 pp.
Глава X
Дата добавления: 2015-12-29; просмотров: 724;