Структурные особенности массивов горных пород.
В литосфере выделяют два вида (или два различных порядка) структурных элементов - глубинные и коровые тектонические структуры.
В пределах этих структур в зависимости от размеров выделяются различные порядки неоднородностей.
Глубинными тектоническими структурами первого порядка являются континенты и океанические области коры. Глубинные структуры второго порядка - это подвижные геосинклинальные пояса и относительно устойчивые платформы. Структуры этих двух порядков, имеющие линейные размеры, исчисляемые тысячами километров, называют планетарными или глобальными.
Коровые тектонические структуры, в отличие от глубинных, менее развиты на глубину и, как правило, не выходят из пределов земной коры. Они образуют складчато-разрывные деформации различных порядков, имеющие линейные размеры по простиранию максимально до десятков, иногда нескольких сотен километров.
Особое значение в тектоническом строении и развитии земной коры принадлежит глубинным разломам, представляющим собой первичные элементы строения земной коры. Наиболее крупные и древние разломы проникают в глубину до подошвы земной коры и ниже, в верхнюю мантию. Сетью пересекающихся глубинных разломов земная кора расчленена на глыбы или их ещё называют литосферными плитами.
Каждая литосферная плита разломами более высоких порядков - коровыми разрывами - расчленена, в свою очередь, на блоки. В пределах плит и блоков развиты плавные и пликативные деформации соответствующих порядков - складчатость и волновые изгибы. Таким образом, в целом земная кора имеет глыбово-волновоеили,другими словами,блочное строение.
Глубинные разломы и разрывы земной коры являются теми естественными швами, по которым на протяжении всей геологической истории Земли непрерывно происходили тектонические движения.
Тектонические структуры в земной коре более высоких - третьего и четвертого - порядков называют региональными. Именно с этими структурными неоднородностями связаны месторождения полезных ископаемых, а, следовательно, и массивы горных пород, которые являются предметом исследований в геомеханике.
В результате расчленения поверхностями структурных неоднородностей региональных порядков массивы горных пород также, как и земная кора в целом, имеют ярко выраженную блочную структуру, причем размеры отдельных структурных блоков обычно существенно различаются между собой и определяются расстояниями между соседними поверхностями структурных неоднородностей. В свою очередь, степень распространения различных типов неоднородностей весьма различна. При этом необходимо отметить, что блочное строение характерно для любых массивов пород, однако для массивов пород, сложенных относительно слабыми осадочными породами оно выражается относительно слабее, чем для массивов прочных скальных пород.
Разработаны различные классификации структурных неоднородностей, одна из наиболее удачных предложена докт. физ.-мат. наук М.В. Рацем, который выделил несколько различных порядков структурных неоднородностей.
К неоднородностям нулевого порядка М.В. Рац отнёс крупные тектонические разрывы, связанные с региональными полями тектонических напряжений, разбивающие массивы пород на блоки с линейными размерами свыше 10 км, это по своей сути региональные структурные неоднородности земной коры III - IV порядков.
Далее выделяются структурные неоднородности, относящиеся собственно к массиву пород в масштабах отдельных месторождений.
Неоднородности первого порядка обусловлены наличием в массиве различных по составу, структуре и текстуре пород, крупных геологических нарушений, тектонических разрывов и т. д. Эти неоднородности расчленяют массив на блоки размерами от сотен метров до километров.
Более мелкие блоки размерами от десятков сантиметров до десятков метров связаны с неоднородностями второго порядка.
К этому классу относят неоднородности структуры и состава пород в пределах одной пачки, слоя, а также естественную трещиноватость.
Трещинами называют разрывы в горных породах, перемещения по которым совершенно отсутствуют или очень незначительны.
По степени проявления различают следующие три группы трещин: открытые, закрытые и скрытые.
Открытые трещины имеют четко видимую полость, часто заполненную вторичными и гидротермальными минералами. Закрытые трещины характеризуются столь сближенными стенками, что хотя сам разрыв по ним хорошо прослеживается, полость по разрыву незаметна. Скрытые трещины, к которым, в частности, относится кливаж углей, визуально не видны, так как они очень тонки, но их можно обнаружить при разбивании или дроблении горных пород.
Естественные трещины обычно образуют в массиве системы или ряды. Трещины одной системы имеют параллельные или близкие к параллельным направления, но не могут пересекаться друг с другом. Часто встречаются две или три системы трещин, пересекающихся друг с другом под углами, близкими к прямым. При этом изменение в ориентировке одной из систем сопровождается соответствующим изменением другой. Такие взаимосвязанные системы трещин называются сопряженными системами.
Обычно в массиве горных пород можно выделить не менее трех систем трещиноватости. В ряде случаев число систем достигает пяти-шести и более.
Детальный анализ развития трещиноватости массивов горных пород различных месторождений показывает, что по линейным размерам трещин и величинам сцепления пород на их контактах выделяются три группы трещиноватости: крупноблоковая, мелкоблоковая и микротрещиноватость. Последняя группа принадлежит к неоднородностям следующих, более высоких (третьего и четвертого) порядков.
Трещины крупноблоковой трещиноватости имеют протяженность, исчисляемую десятками и даже сотнями метров. Протяженность отдельных трещин мелкоблоковой трещиноватости исчисляется метрами и дециметрами. Микротрещины образуют структурные блоки с сантиметровыми размерами.
Различные массивы пород в разной степени расчленены трещинами. Среднее число параллельных трещин (отклонение элементов залегания ±10° от среднего по азимуту и по углу падения), приходящееся на единицу длины l (в направлении, перпендикулярном к трещинам), часто называют густотой или плотностью трещин. Это же число n = 1/l называют также линейным модулем трещиноватости соответствующей системы трещин. Линейный модуль является критерием сравнительной оценки степени выраженности в массиве трещин той или иной системы.
Сравнительная оценка развития общей трещиноватости различных массивов или разных участков некоторого массива может быть выражена объемным модулем трещиноватости W, представляющим собой безразмерное отношение единичного объема массива 1 м3 к среднему объему V структурного блока.
Другим критерием для сравнительной оценки трещиноватости массивов горных пород может явиться акустический показатель трещиноватости Аi определяемый как отношение скоростей упругих колебаний в монолитном образце породы и в трещиноватом массиве. В зависимости от степени развития трещиноватости массивов этот показатель может принимать значения от 0,9 - 1,0 для практически монолитных нетрещиноватых пород до 0,0 - 0,1 для весьма трещиноватых мелкоблочных пород.
К неоднородностям третьего порядка, кроме уже упоминавшейся микротрещиноватости, относятся также контакты между отдельными минеральными образованиями, зернами и кристаллами. При этом размеры блоков, образуемых неоднородностями данного типа, варьируют в пределах от единиц до десятков сантиметров.
Наконец, поскольку горные породы в большинстве своём представляют многокомпонентные поликристаллические агрегаты, выделяют четвертый порядок неоднородностей, связанный со структурными нарушениями межкристаллических областей, а также с дефектами структуры в решетках породообразующих минералов. Размеры структурных элементов в этом случае колеблются от долей миллиметра до нескольких сантиметров.
Всё изложенное позволяет говорить об общих закономерностях структуры, характерных для верхней мантии и земной коры, и проявляющихся в едином иерархически - блочном строении, которое можно проследить от планетарных структур типа континентов до микроструктур на уровне кристаллов и отдельных минеральных зёрен. Это чрезвычайно важное заключение позволяет с единых позиций рассматривать вопросы поведения и состояния различных объёмов столь необычной физической среды, которой является земная кора и слагающие её массивы горных пород.
При этом необходимо подчеркнуть, что у всех выделяемых порядков структурных неоднородностей в пределах, по крайней мере, одного массива горных пород, как правило, наблюдается довольно четкое соответствие в пространственной ориентации. Кроме того, экспериментальные исследования показывают, что между геометрическими и механическими характеристиками структурных неоднородностей массива также существует определенная связь: крупным, но более редким поверхностям неоднородностей соответствуют, как правило, более низкие значения прочностных характеристик.
Изложенное позволяет представить схему строения массива горных пород с учетом структурных неоднородностей различных порядков в виде некоторой пространственной конструкции, состоящей из плотно прилегающих друг к другу блоков с различной степенью связи между ними (рис. 2.1).
Рис. 2.1. Структурная схема массива горных пород.
a-г - деформирующиеся объекты различных линейных размеров.
1-4 - неоднородности соответственно первого - четвертого порядков.
Естественно, что влияние неоднородностей различных порядков на деформирование и разрушение каких-либо конкретных объектов далеко не равнозначно. Например, неоднородности нулевого и первого порядков на устойчивость горных выработок практически не влияют, поскольку размеры структурных блоков, образуемых неоднородностями этих порядков, во много раз превосходят размеры выработок. В то же время неоднородности второго порядка, в частности естественная трещиноватость, оказывают на устойчивость выработок весьма существенное влияние, обусловливая вывалы пород из стенок и кровли выработок.
Степень влияния того или иного порядка неоднородностей определяется соотношением размеров соответствующих структурных блоков и геометрических параметров деформирующихся объектов. При этом механизм деформирования массива пород блочной структуры заключается в деформировании самих блоков и, кроме того, в их взаимном скольжении и вращении. Последние могут проявляться, если масштаб деформируемого объекта соизмерим с размерами блоков, образуемых структурными неоднородностями того или иного порядка, и они принимают участие в деформировании.
На рис. 2.1 деформации объекта «а» определяются лишь деформационными характеристиками материала среды (т. е. с учетом неоднородностей только четвертого порядка), а объектов «б-г» - суммарным влиянием неоднородностей соответствующих порядков и материала среды.
Заметим, что обобщенных численных показателей, характеризующих степень влияния структурных неоднородностей различных порядков на свойства и деформирование горных пород и массивов, пока не имеется. Это объясняется сложностью проведения крупномасштабных экспериментов, а также трудностью интерпретации получаемых результатов, поскольку при испытаниях непосредственно в местах залегания пород влияние на изучаемые процессы, помимо неоднородностей, оказывают и другие факторы: напряженное состояние массива, способ подготовки испытуемых объемов к эксперименту, влажность и др.
Вместе с тем имеющиеся данные экспериментов в массивах, сложенных различными породами, показывают, что наблюдается общая тенденция: - с увеличением объемов, вовлекаемых в процесс деформирования, модули деформации массива существенно снижаются, а значения деформаций возрастают.
Различие показателей свойств горных пород в зависимости от абсолютных геометрических размеров участков породного массива, обусловленное проявлением влияния неоднородностей различных порядков, называют масштабным. эффектом.
Масштабный эффект проявляется и при испытаниях образцов пород различных размеров. Например, даже при сравнении деформационных характеристик кристаллов минералов с соответствующими показателями мономинеральных кристаллических пород можно наблюдать снижение модулей упругости и деформации. Так, если модуль упругости кристалла кальцита равен Е = 12 105, то даже плотные мраморы имеют модуль упругости до Е = 10 105 кгс/см2. Модуль упругости кварца равен Е = 10,3 105, а кварцитов- - 9,2 105 кгс/см2.
В приведенных примерах четко прослеживается влияние неоднородностей четвертого порядка. Структурные неоднородности более низких порядков в ещё большей степени влияют на снижение значений деформационных характеристик.
На рис. 2.2. в качестве примера приведена масштабная кривая изменения скорости продольных упругих волн, являющихся показателем степени упругости пород, в зависимости от исследуемого объёма породного массива, полученная для гранито-гнейсов одного из районов Кольского полуострова.
Рис. 2.2. Масштабная кривая изменения скорости продольных волн с увеличением объёмов исследуемого массива пород для гранито-гнейсов одного из районов Кольского полуострова.
I - деформирование объёмов, включающих структурные неоднородности IV порядка (измерения методом ультразвукового прозвучивания на образцах стандартных размеров); II - деформирование массива, включающего структурные неоднородности III порядка (по данным ультразвукового каротажа в скважинах; III - деформирование массива с участием неоднородностей III порядка и ниже по результатам сейсмических измерений.
В частности, для объёмов пород с линейными размерами » 10-1 см, включающих неоднородности самого высокого порядка, характерны значения скоростей Vp = 5800 м/с, для объёмов с линейными размерами порядка 1 см (с неоднородностями III порядка) величины скоростей снижаются до 5000 м/с и, наконец, для неоднородностей низшего порядка с размерами 106 см преобладающее значение Vp = 4500 - 4600 м/с.
В некоторых случаях наблюдается также и качественное изменение характера деформирования пород. Так, например, если образцы ультраосновных пород - пироксенитов и перидотитов,- включающие структурные неоднородности только четвертого порядка, практически деформируются упруго вплоть до разрушения (рис. 3.5, а), то по мере увеличения области деформирования отчетливо начинают проявляться и вязкие свойства массива. Это выражается, в частности, в постепенном сближении боков выработок очистных блоков (рис. 3.5, б).
Рис. 2.3. Характер деформирования ультраосновных пород в зависимости от размеров деформирующихся объемов.
а - упругое деформирование образцов диаметром 40 мм (ОА-нагружение; AБ-разгрузка); б - развитие деформаций (сближения) стенок выработки u во времени t (1 - сближение реперов над выработанным пространством вертикального очистного блока высотой 40 м; 2 - то же, под выработанным пространством очистного блока).
В большей степени изучено влияние поверхностей неоднородностей различных порядков на изменение прочностных характеристик массива горных пород, являющееся одним из проявлений масштабного эффекта
Так, например, для ультраосновных пород - пироксенитов медно-никелевого месторождения Ниттис-Кумужья-Травяная - предел прочности пород на сдвиг (с учетом неоднородностей только четвертого порядка) составляет 450 кгс/см2, сцепление по мелкоблоковым естественным трещинам, представляющим собой неоднородности третьего порядка, равно 60 кгс/см2, а по крупноблоковым трещинам (второй порядок) - всего около 10 кгс/см2.
Однако необходимо отметить, что степень снижения отдельных параметров не одинакова. Весьма примечательно, например, что пределы прочности на растяжение по мере вовлечения в процесс деформирования неоднородностей низких порядков снижаются очень резко. Если для структурных блоков скальных пород (IV порядок неоднородностей) прочность при одноосном растяжении составляет 0.1 [sсж] и колеблется в пределах 70 - 120 кГ/см2, то для микротрещиноватости (III порядок) это значение снижается до 40 - 50 кГ/см2, а уже для макротрещиноватости (II порядок) оно составляет несколько килограмм-сил на квадратный сантиметр и часто практически падает до нуля.
Поскольку при оценке устойчивости выработок, целиков, откосов бортов карьеров и котлованов часто возникает необходимость характеризовать те или иные свойства массива по данным испытаний образцов в лаборатории, в практике находят применение так называемые коэффициенты структурного ослабления li, характеризующие степень снижения показателей соответствующих механических свойств массива пород вследствие наличия в массиве естественных трещин или других поверхностей структурных неоднородностей.
Коэффициенты структурного ослабления li, могут быть определены для большинства прочностных и деформационных характеристик - пределов прочности на сжатие и растяжение, модуля упругости Е, сцепления [t0], угла внутреннего трения j и др.
Но наиболее употребителен коэффициент структурного ослабления, характеризующий отношение сцепления по контактам естественных трещин к сцеплению в монолитной породе. Этот коэффициент для широкого диапазона породных массивов достаточно устойчив, составляет 0,01-0,02 и наглядно иллюстрирует влияние неоднородностей второго порядка - крупноблоковой естественной трещиноватости - на прочностные характеристики массива пород. Для мелкоблоковой трещиноватости (третий порядок) коэффициент структурного ослабления составляет 0,1-0,2, а по микротрещинам (четвертый порядок) близок к 1.
Влияние других видов структурных неоднородностей на прочность массива изучено менее детально, имеются лишь обобщенные данные о прочностных характеристиках, в частности, значения сцепления и углов внутреннего трения по контактам слоев различных осадочных толщ и отдельных петрографических разновидностей пород.
Детальное рассмотрение структурных особенностей массивов пород и выделение различных порядков структурных неоднородностей показывает, что массивы горных пород представляют собой специфическую иерархично-блочную среду, которая в зависимости от конкретных условий и рассматриваемых объектов может проявлять как свойства сплошной однородной или неоднородной среды, так и свойства блочной среды, т. е. приближаться к дискретным средам.
Вообще всякий неоднородный объект характеризуется размерами элементов неоднородности и степенью неоднородности.
Элементом неоднородности обычно называют наибольший объём породы, который при данном масштабе исследований может рассматриваться «как внутренне однородный» по какому-либо признаку или по совокупности заданных признаков и отличающийся по этим признакам от смежных с ним объёмов.
Под степенью неоднородности понимается интенсивность и характер различия совокупности значений заданных признаков или одного из них в пределах исследуемой области.
В частности, под «структурным блоком» будем пониматьобъём, ограниченный соседними поверхностями структурных неоднородностей одного порядка. Структурные блоки могут иметь формы параллелепипедов или более сложных многогранников и характеризуются линейными размерами рёбер, которые представляют собой расстояния между ближайшими структурными неоднородностями одного и того же порядка. Таким образом, общая структура массива горных пород представляется в виде вложенных друг в друга структурных блоков.
Физическую поверхность, ограничивающую структурный блок, будем называть «структурной неоднородностью», понимая под ней любой вид неоднородностей - поверхности геологических нарушений, контактов различных пород, поверхностей напластования, поверхностей трещин и т.д.
При таком представлении для описания свойств и состояния массивов пород наряду с моделями сплошной среды может быть применена двухкомпонентная модель «структурный блок - структурная неоднородность».
Специфичность массивов горных пород как физических сред в том и проявляется, что в зависимости от решаемых задач и конкретных размеров рассматриваемых объектов или, другими словами, от соотношения размеров элементов неоднородностей и области воздействия один и тот же массив пород может выступать как сплошная среда или как блочная среда с различными параметрами структурных блоков и структурных неоднородностей, а следовательно с различными плотностными и деформационно-прочностными характеристиками.
Наглядно это может быть проиллюстрировано диаграммой структурной неоднородности, конкретизированной для реальных горных объектов применительно к условиям массивов скальных пород (рис. 2.4.).
Рис. 2.4. Диаграмма структурной неоднородности горных пород.
I-IV - порядки структурных неоднородностей;
Деформируемые объекты: 1 – дневная поверхность; 2 - очистные выработки и выработанные пространства; 3 - капитальные и подготовительные выработки, целики; 4 - буровые скважины. Заштрихована область упругого деформирования в массивах скальных пород.
Обычно области, отвечающие сплошной (однородной) и блочной (неоднородной) структурам, условно разделяются прямой Ld / Lc = 10, т.е. если размеры деформируемого объекта превышают величину элемента неоднородности в 10 раз, среда может быть принята практически однородной. По данным же исследований на моделях среда может быть принята однородной лишь при соотношении указанных величин Ld / Lc = 20-40. Поскольку этот вопрос ещё требует уточнения, пока целесообразно выделить на диаграмме некоторую переходную область, где массив с известным приближением можно принимать за однородную или неоднородную среду в зависимости уже от необходимой точности решения конкретных задач. Верхней границей этой области условно можно считать прямую Ld / Lc = 100.
Таким образом, при рассмотрении любых задач геомеханики необходимо в первую очередь выяснить, какие размеры имеют интересующие области деформирования, затем, исходя из размеров деформируемых областей проанализировать структурные особенности конкретного массива пород, и установить какие виды структурных неоднородностей и в какой степени будут влиять на состояние рассматриваемых объектов.
В результате должен быть выявлен вид так называемой «эффективной структурной неоднородности». Все структурные неоднородности, которые меньше «эффективной структурной неоднородности» представляют собой ультранеоднородности, которые не препятствуют рассмотрению пород как сплошной среды и оказывают лишь интегральное влияние на её характеристики.
Объём элементов ультранеоднородностей (Wyн) на 2-3 порядка меньше области воздействия(Wв)т.е.Wун £. 0.01 - 0.001 Wв.
Другими словами, таким образом определяются параметры модели сплошной среды для компонента «структурный блок».
Сама «эффективная структурная неоднородность» обусловливает статистическое распределение любых характеристик и свойств пород массива. Соотношение её размеров с размерами области воздействия составляет Wэн £. 0.1 Wв
Наконец, все структурные неоднородности, размеры которых превышают размеры «эффективной структурной неоднородности» вызывают закономерную изменчивость свойств пород и должны специально учитываться в расчётах, они выступают как макронеоднородности по отношению к области воздействия и объёмы этих элементов неоднородности Wмн ³. Wв.
Вообще свойства среды, отображаемой двухкомпонентной моделью «структурный блок - структурная неоднородность» принципиально могут определяться двумя путями.
Один из них, интегральный, наиболее широко применяемый в настоящее время, заключается в отборе представительных проб или выборе опытных участков в зависимости от порядка (масштаба) изучаемых структурных неоднородносгей) и определении для них некоторых средних, интегральных значений интересующих свойств. Т. е., другими словами, реальная среда заменяется при этом некоторой идеализированной, в которой неоднородности считаются распределенными равномерно и проявляются в снижении средних значений характеристик и повышенном коэффициенте их вариаций.
Другой путь, дифференциальный, заключается в дифференцированном изучении характеристик для компонент, слагающих среду, - структурных блоков и структурных неоднородностей с последующим аналитическим учетом свойств отдельных компонент в процессах деформирования и разрушения пород. Второй путь позволяет избежать непреодолимых технических сложностей проведения крупномасштабных испытаний, особенно при изучении структурных неоднородностей низких порядков. В то же время выявляется необходимость дополнительных исследований закономерностей пространственного размещения неоднородностей, создания их классификаций, разработки метода отбора специальных образцов самих структурных неоднородностей и т. д.
Дата добавления: 2015-12-26; просмотров: 2887;