Инерционные звенья второго порядка. При k = 1 передаточная функция звена: W(p) = .

 

При k = 1 передаточная функция звена: W(p) = .

В виду сложности вывода выражений для частотных характеристик рассмотрим их без доказательства, они показаны на рис.53.

Асимптотическая ЛАЧХ колебательного звена до сопрягающей частоты 1 = 1/T1 совпадает с осью абсцисс, при дальнейшем увеличении частоты идет с наклоном - 40 дб/дек. То есть высокие частоты колебательное звено "заваливает" сильнее, чем апериодическое звено.

Реальная ЛАЧХ при 1 значительно отличается от асимптотической. Это отличие тем существенней, чем меньше коэффициент демпфирования . Точную кривую можно построить, воспользовавшись кривыми отклонений, которые приводятся в справочниках. В предельном случае = 0 получаем консервативное звено, у которого при 1 амплитуда выходных колебаний стремится к бесконечности (рис.54).

 

ЛФЧХ при малых частотах асимтотически стремится к нулю. При увеличении частоты до бесконечности выходной сигнал поворачивается по фазе относительно входного на угол, стремящийся в пределе к - 180о. ЛФЧХ можно построить с помощью шаблона, но для этого нужен набор шаблонов для разных коэффициентов демпфирования. При уменьшении коэффициента демпфирования АФЧХ приближается к оси абсцисс и в пределе у консервативного звена она вырождается в два луча по оси абсцисс, при этом фаза выходных колебаний скачком меняется от нуля до - 180о при переходе через сопрягающую частоту (рис.54).

 








Дата добавления: 2015-12-26; просмотров: 670;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.