СИСТЕМА СХОДЯЩИХСЯ СИЛ

 

Сходящимися называются силы, если их линии действия пересекаются в одной точке. При решении задач на систему, сходящихся сил используются два способа: геометрический и аналитический. Геометрический метод основан на определении, что для уравновешенной системы сходящихся сил силовой многоугольник должен быть замкнутым.

В основу аналитического метода положено понятие проекции силы на ось. Проекцией силы на ось будем называть длину отрезка оси, заключенную между проекциями начала и конца данной силы на ось, взятую с соответствующим знаком (рис. 6).

Из рис. 6 видно, что Fx = F∙ cos a,

Fy = F∙sin a. Принимая во внимание, что для системы сходящихся сил, находящихся в равновесии, проекции равнодействующей на соответствующие координатные оси будут равны нулю, получаем аналитические условия равновесия системы:

 

.

 

Задача 1

Однородная балка длины и веса Р удерживается в равновесии нитью ВС и шарниром А. Найти натяжение нити и реакцию шарнира А, если (рис. 7). Реакция нити ВС направлена по нити, а реакция шарнира А определяется в соответствии с теоремой о трех силах: если свободное твердое тело находится в равновесии под действием трех непараллельных сил, лежащих в одной плоскости, то линии действия этих сил пересекаются в одной точке. Заменив действие связей их реакциями, мы можем перейти от реальной схемы нагружения к расчетной (рис. 7, а). Учитывая, что сила Р приложена в середине балки и следовательно точка К (точка пересечения сил), делит отрезок ВС пополам, определим углы в полученной фигуре. Решение данной задачи может быть проведено двумя методами: геометрическим и аналитическим.

Рис. 7 Рис. 7, а

Геометрический метод.

Из сил, действующих на тело, строим силовой треугольник, который должен быть замкнутым, т.к. под действием этих сил тело находится в равновесии

(рис. 7, б). Для этого откладываем силы по известным направлениям, в любом выбранном масштабе.

Таким образом, задача определения опорных реакций сводится к задаче решения полученного силового треугольника. Для решения воспользуемся теоремой синусов и составляем следующее соотношение:

 

откуда получаем

Рис. 7, б

Аналитический метод.

Для решения задачи составляются уравнения равновесия в виде суммы проекций всех сил на оси координат. Направления осей показаны на рис.7, а.

 

(1)

(2)

Из первого уравнения получаем RC =RA. Из второго находим .

 








Дата добавления: 2015-12-26; просмотров: 761;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.