МУЗЫКАЛЬНАЯ АКУСТИКА

Принцип Гюйгенса.

Для распространения волнового фронта справедлив принцип Гюйгенса. Для выяснения его рассмотрим известную нам форму волнового фронта в какой-либо момент времени. Ее можно найти и спустя время Dt, если каждую точку начального волнового фронта рассматривать как источник элементарной сферической волны, распространившейся за этот промежуток на расстояние vDt. Огибающая всех этих элементарных сферических волновых фронтов и будет новым волновым фронтом. Принцип Гюйгенса позволяет определять форму волнового фрhнта на протяжении всего процесса распространения. Из него следует также, что волны, как плоские, так и сферические, сохраняют свою геометрию в процессе распространения при условии, что среда однородна.

Дифракция звука. Дифракцией называется огибание волнами препятствия. Дифракция анализируется с помощью принципа Гюйгенса. Степень такого огибания зависит от соотношения между длиной волны и размером препятствия или отверстия. Поскольку длина звуковой волны во много раз больше, чем световой, дифракция звуковых волн менее удивляет нас, нежели дифракция света. Так, можно разговаривать с кем-то стоящим за углом здания, хотя он и не виден. Звуковая волна с легкостью огибает угол, тогда как свет из-за малости своей длины волны дает резкие тени.

Рассмотрим дифракцию плоской звуковой волны, падающей на твердый плоский экран с отверстием. Для определения формы волнового фронта по другую сторону экрана нужно знать соотношение между длиной волны l и диаметром отверстия D. Если эти величины примерно одинаковы или l намного больше D, то получается полная дифракция: волновой фронт выходящей волны будет сферическим, а волна достигнет всех точек за экраном. Если же l несколько меньше D, то выходящая волна будет распространяться преимущественно в прямом направлении. И наконец, если l намного меньше D, то вся ее энергия будет распространяться по прямой. Эти случаи показаны на рис. 10.

Дифракция наблюдается и тогда, когда на пути звука оказывается какое-либо препятствие. Если размеры препятствия намного больше длины волны, то звук отражается, а позади препятствия формируется зона акустической тени. Когда размеры препятствия сравнимы с длиной волны или меньше ее, звук дифрагирует в какой-то мере во всех направлениях. Это учитывается в архитектурной акустике. Так, например, иногда стены здания покрывают выступами с размерами порядка длины волны звука. (На частоте 100 Гц длина волны в воздухе около 3,5 м.) При этом звук, падая на стены, рассеивается во всех направлениях. В архитектурной акустике это явление называется диффузией звука.

Отражение и прохождение звука.Когда звуковая волна, движущаяся в одной среде, падает на границу раздела с другой средой, одновременно могут происходить три процесса. Волна может отражаться от поверхности раздела, она может проходить в другую среду без изменения направления или изменять направление на границе, т.е. преломляться. На рис. 11 показан простейший случай, когда плоская волна падает под прямым углом к плоской поверхности, разделяющей два различных вещества. Если коэффициент отражения по интенсивности, который определяет долю отраженной энергии, равен R, то коэффициент прохождения будет равен T = 1 – R.

Для звуковой волны отношение избыточного давления к колебательной объемной скорости называется акустическим сопротивлением. Коэффициенты отражения и прохождения зависят от соотношения волновых сопротивлений двух сред, волновые сопротивления, в свою очередь, пропорциональны акустическим сопротивлениям. Волновое сопротивление газов гораздо меньше, чем жидкостей и твердых тел. Поэтому если волна в воздухе падает на толстый твердый объект или на поверхность глубокой воды, то звук почти полностью отражается. Например, для границы воздуха и воды отношение волновых сопротивлений составляет 0,0003. Соответственно этому энергия звука, проходящего из воздуха в воду, равна лишь 0,12% падающей энергии. Коэффициенты отражения и прохождения обратимы: коэффициент отражения есть коэффициент прохождения в обратном направлении. Таким образом, звук практически не проникает ни из воздуха в водный бассейн, ни из-под воды наружу, что хорошо знакомо всем, кто плавал под водой.

В рассмотренном выше случае отражения предполагалось, что толщина второй среды в направлении распространения волны велика. Но коэффициент прохождения будет значительно больше, если вторая среда представляет собой стенку, разделяющую две одинаковые среды, такую, как твердая перегородка между комнатами. Дело в том, что толщина стенки обычно меньше длины волны звука или сравнима с ней. Если толщина стенки кратна половине длины волны звука в стенке, то коэффициент прохождения волны при перпендикулярном падении очень велик. Перегородка была бы абсолютно прозрачной для звука этой частоты, если бы не поглощение, которым мы здесь пренебрегаем. Если толщина стенки намного меньше длины волны звука в ней, то отражение всегда мало, а прохождение велико, за исключением случая, когда приняты специальные меры по увеличению поглощения звука.

Рефракция звука.Когда плоская звуковая волна падает под углом на границу раздела сред, угол ее отражения равен углу падения. Прошедшая же волна отклоняется от направления падающей волны, если угол падения отличен от 90°. Такое изменение направления движения волны называется рефракцией. Геометрия рефракции на плоской границе показана на рис. 12. Углы между направлением волн и нормалью к поверхности обозначены q1 для падающей волны и q2 – для преломленной прошедшей. В соотношение между этими двумя углами входит только отношение скоростей звука для двух сред. Как и в случае световых волн, эти углы связаны между собой законом Снеллиуса:

 

Таким образом, если скорость звука во второй среде меньше, чем в первой, то угол преломления будет меньше угла падения, если же скорость во второй среде больше, то угол преломления будет больше угла падения.

Рефракция, обусловленная градиентом температуры. Если скорость звука в неоднородной среде непрерывно меняется от точки к точке, то рефракция также меняется. Поскольку скорость звука и в воздухе, и в воде зависит от температуры, при наличии градиента температуры звуковые волны могут изменять направление своего движения. В атмосфере и океане из-за горизонтальной стратификации обычно наблюдаются вертикальные градиенты температуры. Поэтому вследствие изменений скорости звука по вертикали, обусловленных температурными градиентами, звуковая волна может отклоняться либо вверх, либо вниз.

В жидкостях и газах звук распространяется с постоянным давлением и его скорость пропорциональна корню квадратному из абсолютной температуры газа T. В сухом воздухе, содержащим 0,03 угле­рода, при температуре 0 0C скорость звука равна 331 м/с, а с повышением температуры увеличивается: ,

где a = 1/273 - коэффициент расширения газа. В воде звук распространяется примерно в 4,25 раза быстрее, чем в воз­духе, а в твёрдых телах - ещё быстрее (около 5 × 103 - 6 × 103 м/с).

С длиной волны и частотой колебаний скорость звуко­вой волны связана формулой: .

Рассмотрим случай, когда в каком-то месте вблизи поверхности Земли воздух теплее, чем в более высоких слоях. Тогда с увеличением высоты температура воздуха здесь понижается, а вместе с ней уменьшается и скорость звука. Звук, излучаемый источником вблизи поверхности Земли, вследствие рефракции будет уходить вверх. Это показано на рис. 13, где изображены звуковые «лучи».

Отклонение лучей звука, показанное на рис. 13, в общей форме описывается законом Снеллиуса. Если через q, как и раньше, обозначить угол между вертикалью и направлением излучения, то обобщенный закон Снеллиуса имеет вид равенства sinq/v = const, относящегося к любой точке луча. Таким образом, если луч переходит в область, где скорость v уменьшается, то угол q тоже должен уменьшаться. Поэтому звуковые лучи всегда отклоняются в направлении уменьшения скорости звука.

Из рис. 13 видно, что существует область, расположенная на некотором удалении от источника, куда звуковые лучи вообще не проникают. Это так называемая зона молчания.

Вполне возможно, что где-то на высоте, большей, чем показано на рис. 13, из-за градиента температуры скорость звука увеличивается с высотой. В таком случае первоначально отклонившаяся вверх звуковая волна здесь отклонится к поверхности Земли на большом удалении. Так бывает, когда в атмосфере образуется слой температурной инверсии, в результате чего оказывается возможным прием сверхдальних звуковых сигналов. При этом качество приема в удаленных точках бывает даже лучше, чем вблизи. В истории было много примеров сверхдальнего приема. Например, во время Первой мировой войны, когда атмосферные условия благоприятствовали соответствующей рефракции звука, канонаду на французском фронте можно было слышать в Англии.

Рефракция звука под водой. Рефракция звука, обусловленная изменением температуры по вертикали, наблюдается и в океане. Если температура, а стало быть, и скорость звука, уменьшается с глубиной, звуковые лучи отклоняются вниз, в результате чего образуется зона молчания, подобная тому, как это показано на рис. 13 для атмосферы. Для океана соответствующая картина получится, если этот рисунок просто перевернуть. Наличием зон молчания затрудняется обнаружение подводных лодок с гидролокатором, а рефракция, отклоняющая звуковые волны вниз, существенно ограничивает дальность их распространения вблизи поверхности. Тем не менее наблюдается также и рефракция с отклонением вверх. Она может создать более благоприятные условия для гидролокации.

Интерференция звуковых волн.Наложение двух или большего числа волн называется интерференцией волн.

Стоячие волны как результат интерференции. Рассмотренные выше стоячие волны – частный случай интерференции. Стоячие волны образуются в результате наложения двух волн одинаковой амплитуды, фазы и частоты, распространяющихся в противоположных направлениях.

Амплитуда в пучностях стоячей волны равна удвоенной амплитуде каждой из волн. Поскольку интенсивность волны пропорциональна квадрату ее амплитуды, это означает, что интенсивность в пучностях в 4 раза больше интенсивности каждой из волн или же в 2 раза больше суммарной интенсивности двух волн. Здесь нет нарушения закона сохранения энергии, поскольку в узлах интенсивность равна нулю.

Биения. Возможна также интерференция гармонических волн разных частот. Когда две частоты мало различаются, возникают так называемые биения. Биения – это изменения амплитуды звука, происходящие с частотой, равной разности исходных частот. На рис. 14 представлена осциллограмма биений.

Следует иметь в виду, что частота биений – это частота амплитудной модуляции звука. Не следует также путать биения с разностной частотой, возникающей в результате искажений гармонического сигнала.

Биения часто используют при настройке двух тонов в унисон. Настройка частоты производится до тех пор, пока биения не перестанут прослушиваться. Даже если частота биений очень мала, человеческое ухо способно уловить периодическое нарастание и убывание громкости звука. Поэтому биения являются весьма чувствительным методом настройки в звуковом диапазоне. Если настройка не точна, то разность частот можно определить на слух, подсчитав число биений за одну секунду. В музыке на слух воспринимаются и биения высших гармонических составляющих, что применяется при настройке фортепиано.

Поглощение звуковых волн.Интенсивность звуковых волн в процессе их распространения всегда уменьшается вследствие того, что определенная часть акустической энергии рассеивается. В силу процессов теплообмена, межмолекулярного взаимодействия и внутреннего трения звуковые волны поглощаются в любой среде. Интенсивность поглощения зависит от частоты звуковой волны и от других факторов, таких, как давление и температура среды.

Поглощение волны в среде количественно характеризуется коэффициентом поглощения a. Он показывает, насколько быстро уменьшается избыточное давление в зависимости от расстояния, проходимого распространяющейся волной. Убывание амплитуды избыточного давления –DРе при прохождении расстояния Dх пропорционально амплитуде начального избыточного давления Ре и расстоянию Dх. Таким образом,

–DPe = aPeDx.

Например, когда говорят, что потери на поглощение составляют 1 дБ/м, это означает, что на расстоянии 50 м уровень звукового давления уменьшается на 50 дБ.

Поглощение вследствие внутреннего трения и теплопроводности. При движении частиц, связанном с распространением звуковой волны, неизбежно трение между разными частицами среды. В жидкостях и газах такое трение называется вязкостью. Вязкость, которой обусловлено необратимое превращение акустической энергии волны в теплоту, является главной причиной поглощения звука в газах и жидкостях.

Кроме того, поглощение в газах и жидкостях обусловлено потерями теплоты при сжатии в волне. Мы уже говорили, что при прохождении волны газ в фазе сжатия нагревается. В этом быстропротекающем процессе тепло обычно не успевает передаваться другим областям газа или стенкам сосуда. Но в действительности данный процесс неидеален, и часть выделяющейся тепловой энергии уходит из системы. С этим связано поглощение звука вследствие теплопроводности. Такое поглощение происходит в волнах сжатия в газах, жидкостях и твердых телах.

Поглощение звука, обусловленное как вязкостью, так и теплопроводностью, обычно увеличивается пропорционально квадрату частоты. Таким образом, звуки высоких частот поглощаются гораздо сильнее, чем низкочастотные. Например, при нормальных давлении и температуре коэффициент поглощения (обусловленного обоими механизмами) на частоте 5 кГц в воздухе составляет около 3 дБ/км. Поскольку поглощение пропорционально квадрату частоты, коэффициент поглощения на частоте 50 кГц составит 300 дБ/км.

Поглощение в твердых телах. Механизм поглощения звука вследствие теплопроводности и вязкости, имеющий место в газах и жидкостях, сохраняется и в твердых телах. Однако здесь к нему добавляются новые механизмы поглощения. Они связаны с дефектами структуры твердых тел. Дело в том, что поликристаллические твердые материалы состоят из мелких кристаллитов; при прохождении звука в них возникают деформации, приводящие к поглощению звуковой энергии. Звук рассеивается и на границах кристаллитов. Кроме того, даже в монокристаллах имеются дефекты типа дислокаций, вносящие свой вклад в поглощение звука. Дислокации – это нарушения согласования атомных плоскостей. Когда звуковая волна вызывает колебания атомов, дислокации смещаются, а затем возвращаются в исходное положение, рассеивая энергию вследствие внутреннего трения.

Поглощением за счет дислокаций объясняется, в частности, почему не звенит колокольчик из свинца. Свинец – это мягкий металл, в котором очень много дислокаций, в связи с чем звуковые колебания в нем чрезвычайно быстро затухают. Но он хорошо зазвенит, если его охладить жидким воздухом. При низких температурах дислокации «замораживаются» в фиксированном положении, а потому не смещаются и не преобразуют звуковую энергию в теплоту.

МУЗЫКАЛЬНАЯ АКУСТИКА

Музыкальные звуки.Музыкальная акустика изучает особенности музыкальных звуков, их характеристики, связанные с тем, как мы их воспринимаем, и механизмы звучания музыкальных инструментов.

Музыкальный звук, или тон, – это периодический звук, т.е. колебания, которые снова и снова повторяются через определенный период. Выше говорилось, что периодический звук можно представить в виде суммы колебаний с частотами, кратными основной частоте f: 2f, 3f, 4f и т.д. первой гармоникой, обер­тон, с частотой 2f,- второй гармоникой и т.д.

Отмечалось также, что колеблющиеся струны и воздушные столбы издают музыкальные звуки.

Музыкальные звуки различаются по трем признакам: громкости, высоте и тембру. Все эти показатели субъективные, но их можно связать с измеряемыми величинами. Громкость связана в основном с интенсивностью звука; высота звука, характеризующая его положение в музыкальном строе, определяется частотой тона; тембр, которым один инструмент или голос отличается от другого, характеризуется распределением энергии по гармоникам и изменением этого распределения во времени.

Высота звука.Высота музыкального звука тесно связана с частотой, но не тождественна ей, поскольку оценка высоты звука носит субъективный характер.

Так, например, установлено, что оценка высоты одночастотного звука несколько зависит от уровня его громкости. При значительном повышении уровня громкости, скажем на 40 дБ, кажущаяся частота может уменьшиться на 10%. На практике эта зависимость от громкости не имеет значения, поскольку музыкальные звуки гораздо сложнее одночастотного звука.

В вопросе о взаимосвязи между высотой тона и частотой более существенно другое: если музыкальные звуки состоят из гармоник, то с какой частотой ассоциируется воспринимаемая высота звука? Оказывается, что это может быть и не та частота, которая соответствует максимальной энергии, и не самая низкая частота в спектре. Так, например, музыкальный звук, состоящий из набора частот 200, 300, 400 и 500 Гц, воспринимается как звук высотой 100 Гц. То есть высота звука ассоциируется с основной частотой гармонического ряда, даже если ее нет в спектре звука. Правда, чаще всего основная частота в той или иной мере в спектре присутствует.

Говоря о соотношении между высотой звука и его частотой, не следует забывать об особенностях человеческого органа слуха. Это особый акустический приемник, который вносит свои искажения (не говоря уже о том, что существуют психологические и субъективные аспекты слуха). Ухо способно выделять некоторые частоты, кроме того, звуковая волна претерпевает в нем нелинейные искажения. Частотная избирательность обусловлена различием между громкостью звука и его интенсивностью. Труднее объяснить нелинейные искажения, которые выражаются в появлении частот, отсутствующих в исходном сигнале. Нелинейность реакции уха обусловлена асимметрией движения различных его элементов.

Одной из характерных особенностей нелинейной приемной системы является то, что при возбуждении ее звуком с частотой f1 в ней возбуждаются гармонические обертоны 2f1, 3f1, ..., а в некоторых случаях и субгармоники типа 1/2 f1. Кроме того, при возбуждении нелинейной системы двумя частотами f1 и f2 в ней возбуждаются суммарная и разностная частоты f1 + f2и f1 - f2. Чем больше амплитуда исходных колебаний, тем больше вклад «лишних» частот.

Таким образом, в силу нелинейности акустических характеристик уха могут появиться частоты, отсутствующие в звуке. Такие частоты называются субъективными тонами. Предположим, что звук состоит из чистых тонов частот 200 и 250 Гц. Из-за нелинейности отклика дополнительно появятся частоты 250 – 200 = 50, 250 + 200 = 450, 2´200 = 400, 2´250 = 500 Гц и т.д. Слушающему будет казаться, что в звуке присутствует целый набор комбинационных частот, появление же их на самом деле обусловлено нелинейной реакцией уха. Когда музыкальный звук состоит из основной частоты и ее гармоник, очевидно, что основная частота эффективно усиливается разностными частотами.

Правда, как показали исследования, субъективные частоты возникают лишь при достаточно большой амплитуде исходного сигнала. Поэтому не исключено, что в прошлом роль субъективных частот в музыке сильно преувеличивалась.

Музыкальные стандарты и измерение высоты музыкального звука. За основной тон, определяющий весь музыкальный строй, в истории музыки принимались звуки разной частоты. Сейчас общепринятая частота для ноты «ля» первой октавы составляет 440 Гц. Но в прошлом она менялась от 400 до 462 Гц.

Традиционный способ определения высоты звука – сравнение его с тоном стандартного камертона. Об отклонении частоты заданного звука от стандарта судят по наличию биений. Камертонами пользуются до сих пор, хотя теперь существуют и более удобные приборы для определения высоты звука, такие, как эталонный генератор стабильной частоты (с кварцевым резонатором), который можно плавно перестраивать в пределах всего звукового диапазона. Правда, точная калибровка такого прибора довольно сложна.

Широко распространен стробоскопический метод измерения высоты звука, при котором звук музыкального инструмента задает частоту вспышек стробоскопической лампы. Лампа освещает рисунок на диске, вращающемся с известной частотой, и по кажущейся частоте движения рисунка на диске при стробоскопическом освещении определяют основную частоту тона.

Ухо очень чувствительно к изменению высоты звука, но его чувствительность зависит от частоты. Она максимальна вблизи нижнего порога слышимости. Даже нетренированное ухо способно обнаружить разницу в частотах, равную всего лишь 0,3%, в диапазоне от 500 до 5000 Гц. Чувствительность можно повысить тренировкой. Музыканты обладают очень развитым чувством высоты звука, но оно не всегда помогает при определении частоты чистого тона, создаваемого эталонным генератором. Это говорит о том, что при определении на слух частоты звука важную роль играет его тембр.

Тембр.Под тембром понимаются те особенности музыкальных звуков, которые придают музыкальным инструментам и голосам их неповторимую специфику, даже если сравнивать звуки одинаковой высоты и громкости. Это, так сказать, качество звука.

Тембр зависит от частотного спектра звука и его изменения во времени. Он определяется несколькими факторами: распределением энергии по обертонам, частотами, возникающими в момент появления или прекращения звука (так называемыми переходными тонами) и их затуханием, а также медленной амплитудной и частотной модуляцией звука («вибрато»).

Интенсивность обертонов. Рассмотрим натянутую струну, которая возбуждается щипком в ее средней части (рис. 15,а). Поскольку все четные гармоники имеют узлы посередине, они будут отсутствовать, и колебания будут состоять из нечетных гармоник основной частоты, равной f1 = v/2l, где v – скорость волны в струне, а l – ее длина. Таким образом, будут присутствовать только частоты f1, 3f1, 5f1 и т.д. Относительные амплитуды этих гармоник показаны на рис. 15,б.

Данный пример позволяет сделать следующий важный общий вывод. Набор гармоник резонансной системы определяется ее конфигурацией, а распределение энергии по гармоникам зависит от способа возбуждения. При возбуждении струны в ее середине доминирует основная частота и полностью подавляются четные гармоники. Если же струну закрепить в ее средней части и ущипнуть в каком-нибудь другом месте, то будут подавлены основная частота и нечетные гармоники.

Все это применимо и к другим известным музыкальным инструментам, хотя в деталях ситуация может сильно отличаться. В инструментах обычно имеется воздушная полость, дека или рупор для излучения звука. Все это и обусловливает структуру обертонов и возникновение формант.

На рис. 16 показаны формы колебаний для различных инструментов и голосов, а на рис. 17 представлены некоторые частотные спектры для устойчивых тонов различных распространенных инструментов.

Форманты. Как сказано выше, качество звука музыкальных инструментов зависит от распределения энергии по гармоникам. При изменении высоты звука многих инструментов и особенно человеческого голоса распределение по гармоникам изменяется так, что основные обертоны всегда располагаются примерно в одном и том же частотном диапазоне, который называется диапазоном формант. Одной из причин существования формант является применение резонансных элементов для усиления звука, таких, как дека и воздушный резонатор. Ширина естественных резонансов обычно велика, благодаря чему эффективность излучения на соответствующих частотах выше. У медных духовых инструментов форманты определяются раструбом, из которого выходит звук. Обертоны, приходящиеся на диапазон формант, всегда сильно подчеркиваются, так как излучаются с максимальной энергией. Формантами в значительной мере определяются характерные качественные особенности звуков музыкального инструмента или голоса.

Изменение тонов во времени. Тон звучания любого инструмента редко остается постоянным во времени, и с этим существенно связан тембр. Даже когда инструмент выдерживает долгую ноту, наблюдается небольшая периодическая модуляция частоты и амплитуды, обогащающая звук, – «вибрато». Это особенно характерно для струнных инструментов типа скрипки и для человеческого голоса.

У многих инструментов, например у фортепиано, длительность звука такова, что постоянный тон не успевает сформироваться – возбуждаемый звук быстро нарастает, а затем следует его быстрое затухание. Поскольку затухание обертонов обычно обусловлено зависящими от частоты эффектами (такими, как акустическое излучение), очевидно, что распределение по обертонам меняется на протяжении звучания тона.

Характер изменения тона во времени (быстрота нарастания и спада звука) для некоторых инструментов схематически показан на рис. 18. Как нетрудно видеть, у струнных инструментов (щипковых и клавишных) постоянный тон практически отсутствует. В таких случаях говорить о спектре обертонов можно лишь условно, поскольку звук быстро меняется во времени. Характеристики нарастания и спада – тоже важная составляющая тембра таких инструментов.

Переходные тона. Гармонический состав тона обычно быстро изменяется за короткое время после возбуждения звука. В тех инструментах, в которых звук возбуждается ударом по струнам или щипком, энергия, приходящаяся на высшие гармоники (а также на многочисленные негармонические составляющие), максимальна сразу же после начала звучания, а через доли секунды эти частоты замирают. Такие звуки, называемые переходными, придают специфическую окраску звуку инструмента. В фортепиано они обусловлены действием молоточка, ударяющего по струне. Иногда музыкальные инструменты с одинаковой структурой обертонов можно различить только по переходным тонам.








Дата добавления: 2015-12-26; просмотров: 1214;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.027 сек.