Архитектурная акустика

 

Архитектурная акустика занимается изучением законов распространения звука в помещениях.

Это очень сложная и интересная наука.

Сколько различных историй и легенд о таинственных голосах, о зловещем шепоте рассказывается повсюду!

В статье «Звук», которую написал сэр Джон Гершель для Британской энциклопедии, рассказан такой интересный случай.

В одном из соборов на острове Сицилия шепот исповедующихся в грехах верующих был хорошо слышен в противоположной стороне храма.

Случайно это место было обнаружено одним из верующих, который не только сам подслушивал тайну исповеди, но и приглашал развлекаться своих друзей. Это развлечение, однако, неожиданно прекратилось. Но произошло это не потому, что исповедь стала плохо слышимой. Злые языки говорят, что однажды герой этого рассказа вместе со своими друзьями подслушал кое‑что о самом себе, и ему стало совсем не до смеха.

На одном из южных островов Азии имеется колодец глубиной 70 метров и шириной 4 метра. Стенки его выложены гладкой плиткой. Если бросить в колодец даже иголку, то слышно, как она ударяется о воду.

А шепот, разносящийся на десятки метров!..

Вот, например, в Крыму, на побережье Черного моря, в Никитском ботаническом саду, на одной из аллей, есть такое место, где еле произнесенный шепот хорошо слышен в долине виноградника, спускающегося к морю. Но зато там совершенно не слышен громкий голос говорящих в долине. Все эти особенности поведения звука можно объяснить, если внимательно проследить за его распространением.

Архитектурная акустика занимается вопросами распространения, поглощения и изоляции звука в зданиях.

В чем заключается различие распространения звука в закрытом помещении от распространения в свободной атмосфере?

В закрытом помещении звук источника отражается от стен, потолка, пола, наполняя собой все помещение. Звук, идущий от источника, называют прямым – он раньше всех отраженных приходит к слушателю.

Отраженные звуки, если они приходят к слушателю на шесть сотых секунды позже основного, воспринимаются им как эхо.

Эхо следует одно за другим, постепенно замирая. Поэтому ухо после прямого звука слышит постепенно замирающий гул.

Такое послезвучание называют реверберацией.

Благодаря реверберации помещения обладают гулкостью.

Время реверберации должно находиться в строгих пределах. Если оно велико – это влечет за собой потерю четкости и разборчивости речи. При малом времени реверберации в помещении так же тяжело говорить и петь, как на открытом воздухе, ибо в этом случае запаздывающие звуки незначительно усиливают прямой звук.

Эти две причины обусловливают некоторое среднее время реверберации, при котором наличие отражений не создает помех в четкости и разборчивости, а, с другой стороны, делает звук приятным.

Для помещений средних размеров такое время не должно быть меньше 0,6 секунды, но и не больше чем 1,3 секунды.

Примером помещения с хорошими акустическими свойствами является Колонный зал Дома союзов в Москве. Построил его архитектор М. Ф. Казаков в 1784 году.

Попытаемся теперь уяснить, как же происходит отражение звука.

Прежде всего следует заметить, что процесс отражения зависит от формы отражающей поверхности, которая разделяет две среды, – скажем, от формы стены.

Если она гладкая, то размеры имеющихся на ней шероховатостей меньше, чем расстояние между двумя слоями, в которых происходит сжатие или разрежение (это расстояние называют длиной звуковой волны). В этом случае происходит зеркальное отражение.

Но если шероховатости сравнимы с длиной звуковой волны, падающей на поверхность раздела, то звуковая волна рассеивается во все стороны. В этом случае говорят, что отражение диффузное.

Закон зеркального отражения звука весьма прост: угол падения звуковой волны равен углу отражения.

Когда звуковая волна достигает поверхности раздела, происходит не только отражение, но и преломление звука – проникновение колебаний через поверхность раздела во вторую среду. При этом звук изменяет направление распространения. Поэтому и говорят, что звук преломляется.

Интенсивность звука, отраженного поверхностью раздела и преломленного, то есть прошедшего через нее, зависит от граничащих сред.

Особый интерес представляет тот случай, когда интенсивность отраженного звука равна интенсивности падающего. Это полное отражение. Явление полного отражения можно наблюдать только в том случае, если звук попадает в среду, где скорость его распространения больше. Существование полного отражения приводит к весьма интересному явлению, которое иногда наблюдается в море.

Звук попадает в подводную ловушку – «мышеловку», из которой он не имеет возможности выбраться ни вниз, ко дну моря, ни вверх, к свободной поверхности.

И все это происходит из‑за полного отражения на верхней и нижней поверхности слоя воды, простирающегося на сотни километров.

Явление это называется сверхдальним распространением звука.

Сверхдальнее распространение происходит благодаря тому, что скорость звука в воде различна на разных глубинах. А в толще моря существует слой, у которого скорость звука постоянна, но она меньше, чем в слоях, расположенных выше и ниже его.

Из такого слоя звук выбраться не может, так как, доходя до верхней его части, он должен переходить в слои, где скорость его должна быть больше, а это значит, что существует возможность полного отражения при падении под некоторым большим углом. После полного отражения от верхней части слоя звук достигает его нижней части и тоже отражается. Так он все дальше и дальше удаляется от источника, испытывая многократно полное отражение, и не выходит из слоя до тех пор, пока его интенсивность из‑за поглощения не уменьшится настолько, что он становится неслышимым. Но это произойдет на расстоянии сотен километров от источника, если, разумеется, по дороге слой по каким‑либо причинам не разрушится.

В Тихом и Атлантическом океанах наблюдали сверхдальнее распространение на расстояниях более тысячи километров.

Наличие таких слоев весьма благоприятно для подводной сигнализации и затрудняет обнаружение подводных лодок.

Но вернемся к архитектурной акустике, задача которой сводится к подбору наилучшего времени реверберации. Это достигают выбором материала для облицовки и украшения стен, а также соотношением длины, ширины и высоты помещения. Но, кроме этого, особенно важным является поглощение звука в помещении.

Поглощением называют ослабление интенсивности звуковой волны, уменьшение ее энергии.

В стенах квартир и учреждений имеются специальные материалы, увеличивающие поглощение.

Весьма остроумным приемом воспользовались для увеличения поглощения русские ученые. Внутри стен устроили полости с маленькими отверстиями. Столб воздуха внутри такой полости обладает собственной частотой колебаний.

Если на стену, в которой имеются такие полости, падает звуковая волна, частота колебаний которой совпадает с собственной частотой столба воздуха в полости, то появляется резонанс.

Энергия падающей волны расходуется на поддержание этих колебаний, и благодаря этому отражение от стенки ничтожно,

Такое устройство называют резонансным звукопоглотителем. Впервые разработал его профессор МГУ С. Н. Ржевкин.

Законы отражения звука делают возможным вести изыскания в недрах земли полезных ископаемых, нефти и газа.

Для этого посылают звук в глубину земных недр, и там, где он встречает границу раздела сред, то есть, где залегают пласты ископаемых, происходит отражение. Отраженный сигнал улавливают и подсчитывают глубины залегания полезных ископаемых.

 

 

ПУТЕШЕСТВИЕ ЗВУКОВ

 

Азбука звуков

 

В глубокой древности был широко распространен однострунный музыкальный инструмент – монохорд.

Трудно судить, как велико было искусство игры на монохорде древних, но то, что на одной струне можно с блеском исполнить сложную музыку, продемонстрировал гениальный итальянский скрипач Николо Паганини.

Однажды он выступал на концерте, и у него во время игры последовательно оборвались три струны. Но Паганини не прекратил игры и блестяще продолжал концерт на одной единственной струне, оставшейся на его скрипке. Очевидцы с восторгом описывают его игру.

 

Монохорд представляет собой доску, по краям которой имеются колки для крепления струны. Две передвижные подставки позволяют легко изменять ее длину. Вращая один из колков, можно натянуть струну сильнее и слабее. При этом, однако, мы не имеем представления о том, с какой силой она натянута. Поэтому вместо того колка, которым натягивают струну, на конце доски помещают легкий блок, через который перебрасывают струну, а к ее концу подвешивают груз определенного веса.

Теперь струна натянута, и ее натяжение определяется весом этого груза.

Если ударить струну посередине между подставками, то она будет совершать колебание, издавая звук определенного тона. Каждый тон, как известно, характеризуется определенным числом колебаний в секунду. Сблизив подставки, на которые опирается струна, так, чтобы расстояние между ними было вдвое меньше, можно обнаружить, что тон звучания заметно повысился. Струна, длина которой вдвое меньше, совершает в секунду вдвое больше колебаний. Если расстояние между подставками составляет одну треть от первоначального, то длина струны равна одной трети, и число колебаний в секунду при этом утроится. Тон звука еще более повысился. Продолжая уменьшать длину струны, обнаружим, что, во сколько раз уменьшается ее длина, во столько раз увеличивается число колебаний в одну секунду, если при этом ее натяжение остается неизменным, а звучание струны вызвано ударом по ее середине.

Оставляя длину струны неизменной, легко обнаружить, что по мере увеличения натяжения число колебаний в секунду также увеличивается.

Монохорд

 

Если, например, груз увеличить в четыре раза, то частота увеличится вдвое. При увеличении груза в девять раз, частота утроится, а увеличив груз в шестнадцать раз, мы учетверим частоту колебаний струны. Это показывает, что отношение частот колебаний струны равно квадратному корню отношения натягивающих ее грузов.

Если взять другую струну из такого же материала и той же длины, то частота ее колебаний при одинаковом натяжении будет во столько раз больше, во сколько раз она тоньше.

Кроме этого, число колебаний в секунду зависит от удельного веса материала струны.

Таким образом, на монохорде мы выяснили, как зависит частота колебаний струны от ее длины, натяжения, толщины и удельного веса.

Обратимся теперь к опытам, которые позволят нам уяснить, почему мы можем различать звуки различных струнных музыкальных инструментов, издающих один и тот же тон.

Эти исследования мы опять‑таки проведем на монохорде. Натянем струну, выбрав определенное расстояние между подставками, которое определит ее длину. После удара посередине струна придет в колебание как целое. Больше всего отклоняться будет ее середина, в то время как места, которые находятся на подставках, будут покоиться. Струна будет издавать звук определенного тона. Этот тон зависит от ее длины, толщины, силы натяжения и удельного веса материала, из которого она изготовлена.

Если же, удерживая пальцами середину струны, ударить ее посередине одной из образовавшихся половин, то обе половины приходят в колебание, как струны вдвое меньшей длины. Струна при этом издает звук, частота которого вдвое больше основной. Середина всей струны, равно как и ее концы на подставках, при этом покоятся.

Опыты с монохордом

 

Зато середины половин струны отклоняются на наибольшее расстояние от положения равновесия. Эти точки называют пучностями; их в этом случае две.

Если во время удара удерживать пальцами струну на одной трети ее длины, то струна делится на три части, которые колеблются, как струны втрое меньшей длины, издавая звук, частота которого втрое больше. Узловых точек при этом будет четыре, а пучностей три. Таким образом можно делить струну на любое число частей.

Мы уже говорили, что, кроме основного тона, всегда имеется несколько тонов более высоких частот. Они называются обертонами. Слово «обертон» немецкого происхождения и означает высший тон. Число обертонов определяет тембр звучания, и это позволяет отличать звучание струн одного тона различных музыкальных инструментов, так как струны никогда не звучат одним тоном.

Отношение частот двух различных колебаний называется интервалом. Если это отношение равно 1:1, то такой интервал называют унисон. При отношении частот, равном 1:2, появляется октава; если же оно равно 2:3 – квинта, а при отношении частот 3:4 – кварта. Наконец, отношение частот 4:5 называют большой терцией и 5:6 – малой терцией.

Интересно звучат два издаваемых одновременно звука, частоты которых мало отличаются друг от друга. Их совместное звучание создает своеобразное звуковое восприятие – завывание, которое называют биением. Это явление заключается в периодическом усилении и ослаблении совместного звучания.

Количество усилений слышимого звука в одну секунду называют частотой биений. При малой частоте биений, например когда число их не превосходит четырех, они не вредны для звукового восприятия. Если они достигают трех десятков в секунду и в особенности тридцати трех, звуковое ощущение воспринимается особенно болезненно. Но, однако, при большем их числе влияние биений на звуковое ощущение постепенно исчезает.

При совместном звучании двух струн их обертоны могут давать неприятные биения – диссонанс. Если обертоны – одинаковые простые тона, биений не наблюдается. Такое созвучие называется консонансом.

Объяснение консонанса и диссонанса было дано немецким физиком‑физиологом Гельмгольцем в книге «Учение о слуховых ощущениях».

Изучение интервалов тонов, которые дают лучшие консонансы, привело к образованию созвучий, где отношение частот строго определено. Такое созвучие называют гаммой.

Мажорная, или диатоническая, гамма включает тона, частоты которых относятся, как:

 

Звук, частота которого равна 65 герцам, называют «до» первой октавы. Правда, в различных странах эти числа немногим отличаются от 65.

Примем «до» третьей октавы (256 герц) основным и, согласно диатонической гамме, найдем остальные шесть тонов. Числа колебаний шести других тонов гаммы будут: 288; 320; 341,33… 384; 426,66; 480 герц. Этим звукам соответственно присвоено название: «ре», «ми», «фа», «соль», «ля», «си».

Указанные числа частот колебаний весьма приближенны, ибо «до» первой октавы взято не совсем точно, а следовательно, не совсем точно и «до» третьей октавы, которое положено в основу построения гаммы. Уточнив значение «до» первой октавы, следует соответственно пересчитать и другие тона.

До недавнего времени тон «ля» третьей октавы был принят равным 435 герцам, этому значению «ля» третьей октавы соответствует «до» первой октавы – 65,25 герца.

Теперь принято считать за «ля» третьей октавы звук частоты 440 герц. Его можно систематически слышать по радио, когда подают сигналы настройки музыкальных инструментов.

Различие в частотах, выбранных для «до» первой октавы, не является особо важным, так как для музыкальных целей несущественно абсолютное значение частоты, важно отношение частот, то есть величина интервала. Определить точно ноту могут только люди с абсолютным слухом; все остальные, включая даже известных музыкантов, умеют только сравнивать звуки между собой. Вот для чего перед началом пения вы обязательно слышите аккомпанемент. Он необходим певцу, чтобы настроиться на нужную ноту.

Основы учения о соотношениях частот музыкальных звуков были заложены в глубокой древности великим греком Пифагором, который жил в VI веке до нашей эры. Каждому тону Пифагор дал характеризующее его число. Считая числа основой всех закономерностей в явлениях природы, Пифагор искал гармонии чисел, которая должна была определить гармонию звуков.

Предание сохранило нам историю того, как Пифагор открыл эту гармонию. Правда, скажем сразу, достоверность этого рассказа весьма сомнительна.

Однажды, проходя мимо кузницы, где несколько рабочих ковали железо, Пифагор заметил, что молоты издавали гармонические тона, именно: октаву, квинту и кварту. Войдя в кузницу, он убедился, что различие тонов зависело от относительного веса молотов, именно: самый легкий равнялся 1/2, следующий – 2/3 и, наконец, последний – 3/4 веса наиболее тяжелого молота.

По возвращении домой Пифагор повесил четыре шнурка равной толщины и привязал к ним три груза одинаковых весовых отношений с молотами кузнецов. Шнурки при ударах издавали звуки.

 

Интервалы звуков, получаемые при этом, оказались такими же, как и звуков молотов в кузнице. Пифагор мог благодаря этому выразить гармонические интервалы звуков отношением чисел.

То, что в те времена умели это делать, не подлежит сомнению, так как у пифагорийцев гармонические отношения играли выдающуюся роль, но содержание рассказа неверно.

Во‑первых, наковальня, как и колокол, всегда дает один и тот же, основной, тон при ударах различными молотами.

Во‑вторых, струны издают указанные тона, когда имеется зависимость между их длинами, а у Пифагора речь шла о грузах, натягивающих струны.

Но, по мнению некоторых ученых, соотношение между длинами струн и интервалами тонов отыскали именно пифагорийцы.

Интересно заметить, что терцию Пифагор отвергал, не считая ее звучание приятным именно из‑за сложного отношения чисел (4:5 или 5:6).

В глубокой древности звуки мелодий записывали буквами. В средние века перешли на особые значки – невмы, которые приблизительно указывали повышение и понижение мелодии. В X веке для уточнения высоты звука невмы стали писать на линейках, точно определяющих высоту звука, то есть тон. Постепенное усовершенствование привело к современной записи звуков. Этим мы обязаны Гвидо Аретинскому, который изобрел систему линий, а тона назвал именами, и Жану де Меру, который усовершенствовал ноты тем, что ввел головки для обозначения их продолжительности.

Основой современной записи звука являются пять горизонтальных линеек, которые называют нотоносцами.

Пример музыкальной записи

 

Кроме пяти основных линеек, существуют добавочные – пять вверху и пять внизу. Что означают значки на линейках, каким нотам они соответствуют, указывает ключ, который ставят в начале пяти линеек. Чаще всего встречаются два ключа: ключ «соль» – скрипичный и ключ «фа» – басовый. Основные линейки разбиты вертикальными линиями на части – так называемые такты. Они определяют длительность звучания. В начале пяти линеек мы видим ключ «соль», тогда внизу на первой добавочной линейке располагается значок, имеющий форму сплюснутого круга; это звук «до» третьей октавы, звучание которого должно длиться на протяжении одного такта.

Если вместо этого значка стоит другой – такой же сплюснутый круг, но имеющий с одной стороны вертикальную черточку, то звучание звука «до» третьей октавы должно длиться в течение половины такта, а другая половина может быть предоставлена другим звукам, либо ему же, но вновь повторенному. Когда необходимо создать звучание в одну четверть такта, то круг зачерняют. Время звучания можно уменьшить еще вдвое, то есть свести его к одной восьмой такта, для чего вверху палочки добавляют опущенный вниз хвостик. Добавка еще одного хвостика означает, что звучание длится одну шестнадцатую такта. И, наконец, если знак содержит три хвостика, звук должен звучать всего одну тридцать вторую долю времени целого такта.

Поэтому значок звука, который должен длиться такт, называют целой нотой, а остальные, соответственно, половиной, одной четвертой, одной восьмой, одной шестнадцатой и одной тридцать второй ноты. Длительность звука в такте определена формой ноты, а положение ноты на линейках указывает тон звука.

Если значок помещен между добавочной и первой основной линейкой, это означает звук «ре» третьей октавы.

Нота на первой линейке означает звук «ми», между первой и второй линейками – «фа», на второй – «соль», а между второй и третьей – «ля». На третьей линейке располагается звук «си». Если значок стоит между третьей и четвертой линейками, то начинается следующая октава, то есть звук «до» четвертой октавы. Далее все идет в той же последовательности.

Много других значков существует в нотной записи звуков. Одни указывают на то, как их следует воспроизводить – быстро или отрывисто, громко или тихо. Другие регулируют паузы – промежутки между отдельными звуками. И, наконец, существуют значки, которые указывают на необходимость усилить звучание последующих звуков или, наоборот, воспроизводить их всё тише и тише.

Нотная грамота

 

На рисунке приведена таблица всех знаков, употребляемых в нотной записи, а на стр. 80 – пример музыкальной записи.

Нотная запись позволяет записать и надолго сохранить мелодию.

Записанную мелодию всегда можно воспроизвести. Для этого необходимы инструменты и исполнители, умеющие читать нотную запись.

Музыканты читают ее и мысленно воспроизводят звуки, соответствующие значкам нотной записи. Так снова рождается мелодия, записанная когда‑то далеким, зачастую незнакомым композитором, говорящим на чужом языке. А язык мелодий и звуков одинаков для всех стран и всех народов.

 

Звук путешествует

 

Первое путешествие звука началось в XIX веке в лаборатории американского физика Белла. Он во что бы то ни стало решил отправить звук путешествовать по проводам. Скучно было телеграфистам расшифровывать длинные бумажные ленты точек и тире азбуки Морзе, перебрасываясь фразами, не слыша голоса собеседника.

Прежде чем отправить звук путешествовать, Белл тщательно подбирал ему надежных помощников.

Ими оказались: явление электромагнитной индукции и результаты опытов немецкого физика Хладни. Познакомимся с ними поближе.

Майкл Фарадей

 

Явление электромагнитной индукции, открытое английским физиком Фарадеем в 1831 году, состоит в том, что в замкнутом проводнике, к которому подносят магнит, возникает электрический ток. Ток в катушке будет тем больше, чем быстрее мы подносим к ней магнит. Если магнит удалять, то в катушке тоже возникает ток, но противоположного направления.

И вот Белл намотал проволоку на намагниченный стержень и, замкнув концы проволоки, обнаружил, что если к одному из его концов поднести звучащий камертон, то в катушке возникает ток переменного направления. Если теперь концы проволоки соединить с концами другой такой же катушки, намотанной на стержне, перед которым поставить такой же камертон, то ножки второго камертона придут в движение. Он будет звучать. Переменный ток, протекая по второй катушке, намагничивает находящийся внутри нее стержень. А тот в такт изменению тока то сильнее, то слабее притягивает находящуюся вблизи него ножку камертона, заставляя ее совершать колебания. Теперь надо было подумать о передаче человеческой речи.

Опыты Белла

 

Немецкий физик Хладни изучал звучание колеблющихся пластин. Он приводил их в колебательное движение с помощью обычного смычка, того самого, который вы часто видите в руках скрипачей. Хладни интересовало, каким образом колеблются различные участки пластин. Для этого он изучал затейливые узоры, образованные посыпанным на пластины песком.

Для одинаковых тонов эти узоры всегда повторялись. Это означало, что пластина колеблется каждый раз совер шенно одинаково.

Опыт Хладни

 

Повторяя опыты Хладни, Белл заметил, что пластины отзываются и на звук человеческого голоса. А это значит, что пластина колеблется под действием звуковой волны человеческой речи. Тогда Белл выбрал пластинки соответствующей толщины и расположил их вместо камертона.

Под действием звука человеческого голоса одна из таких пластин приходила в колебательное движение, создавая в катушке импульсы электрического тока. Эти импульсы передавались в другую катушку. При этом стержень, на который она была намотана, перемагничивался. Расположенная перед ним вторая пластина пришла в движение и в точности воспроизвела звук первой, то есть человеческую речь!

«Передаватель» Белла

«Приемник» Белла

 

Так звук стал путешественником. Изобретенное Беллом устройство названо телефоном. Слово телефон означает «видимый звук». Такое название устройству Белла дано потому, что звуковые колебания, воспринятые пластинкой, становились видимыми, если ее посыпать песком, как делал Хладни.

Легко понять, что принципиальная конструкция, позволяющая передавать речь на расстояние, так остроумно решенная Беллом, в то время обладала большими техническими недостатками.

Первоначально два лица, соединенные телефоном, говорили по очереди. Один говорил, а другой слушал. Затем говорил другой, а первый слушал, используя для этого одно и то же устройство – телефон. Устранил это неудобство микрофон изобретателя Юза.

Микрофон Юза

 

Микро означает «малый», а фон – «звук». Устройство Юза улавливало самые малые, совсем незначительные звуки и передавало по телефону, делая их хорошо слышимыми.

Микрофон Юза представлял собой две угольные чашечки, внутрь которых был помещен стерженек из угля. Малейшее сотрясение вызывало дрожание этого стерженька. Чашечки соединялись с полюсами батареи. Сила тока в этой цепи из‑за дрожания стержня менялась, ибо при этом менялось сопротивление из‑за переменных контактов между стержнем и чашечками. Изменение силы тока, разумеется, происходило в такт дрожанию стержня. А его колебания легко возбуждались звуками человеческой речи. Объединением микрофона и пластинки телефона была создана телефонная трубка. Со временем угольный стерженек был заменен угольным порошком, сопротивление которого очень резко менялось с изменением величины давления.

В настоящее время существует несколько типов микрофонов. Но они похожи на первый микрофон Юза.

Так когда‑то разговаривали по телефону

 

Спустя четверть века после изобретения телефона немецкий физик Герц получил электромагнитные волны, существование которых предсказал великий английский ученый Максвелл.

Велико было торжество научной теории. Но еще значительнее стала победа, когда электромагнитные волны заставили служить человеку.

Одно из величайших открытий в этой области было сделано русским физиком Александром Степановичем Поповым.

Александр Степанович Попов

 

Изучение электромагнитных волн Герца, как их тогда называли, привело Попова к мысли, что благодаря быстрому распространению в пространстве эти волны можно использовать для передачи сигналов. И он создал первые в мире передатчик и приемник электромагнитных колебаний – радиоволн. Вначале это были сигналы азбуки Морзе: короткие – точки, длинные – тире.

Приемник Попова

 

Но как быть с музыкой и человеческой речью?

Звуковые колебания можно превратить в колебания электрического тока, но передать их без проводов нельзя. Дело в том, что электромагнитные колебания можно излучать в пространство лишь в том случае, когда их частота будет значительно больше, чем верхний предел числа слышимых колебаний.

Эта трудность была устранена весьма остроумным и в то же время простым способом.

Электрические колебания высокочастотного передатчика сложили с электрическими колебаниями, которые возбуждает звук, и вот эту смесь стали излучать в пространство. Звук как бы оседлал электромагнитную волну. Добравшись на ней до приемника, который отделяет электрические колебания звуковой частоты от электрических колебаний высокой, он поступает в телефон, заставляя пластинку этого аппарата совершать звуковые колебания и излучать звук в окружающее пространство. Так звук садится на «коня», называемого несущей частотой, и мчится на нем до приемника. А там он спрыгивает и двигается самостоятельно, давая нам возможность услышать далекую музыку.

 

Подарок Эдисона

 

В Москве, в музее Льва Николаевича Толстого, хранится интересный подарок, который был ему сделан знаменитым изобретателем Томасом Эдисоном.

Томас Эдисон прислал в подарок Льву Николаевичу Толстому слепок со звука, или, как в то время говорили, говорящее письмо.

Каким же образом удалось жителю Америки прислать через океан в далекую от него Россию запись своего голоса?

Звук издают тела, колеблющиеся в какой‑либо среде, например в воздухе. Но если на пути распространения звука поместить тонкую пластинку, то она под действием колебания окружающей среды сама приходит в движение. Это явление и было использовано Томасом Эдисоном для записи звука.

Он укрепил на такой пластинке иглу из сапфира; игла едва касалась небольшого цилиндра. При вращении цилиндра она слегка царапала его поверхность, покрытую листом олова. Глубина царапины при этом была одинаковой. Но если на пластинку падала звуковая волна, след иглы становился неравномерным, так как под действием звука пластинка вместе с иглой колебалась и прижимала иглу к поверхности цилиндра с различной силой. Для того чтобы после одного оборота игла не попадала снова в проделанную ею борозду, цилиндр при вращении смещался по оси. И борозда, которую царапала игла на поверхности цилиндра, извивалась спиралью.

Таким образом Эдисону удалось записать речь в виде царапин на поверхности цилиндра. Для ее воспроизведения достаточно было поместить такую же иглу в начале борозды. При вращении цилиндра игла начинает скользить вдоль борозды, все время подпрыгивая, и заставляет пластинку, к которой она прикреплена, колебаться. А колеблющаяся пластинка прекрасно воспроизводила записанную ранее речь.

Этот прибор был назван фонографом. Его вскоре усовершенствовали. Оловянную поверхность цилиндра заменили восковой, что значительно удешевило прибор.

Фонограф Эдисона по сути дела был усовершенствованием такого же устройства для записи звука, изобретенного в 1859 году англичанином Скоттом.

Прибор Скотта назывался фонавтографом. В нем звук записывался на закопченную бумагу иглой, соединенной с пластинкой – мембраной.

Вся беда фоноавтографа была в том, что воспроизвести записанный звук было совершенно невозможно. Запись по сути дела пропадала. Но вскоре прибор был усовершенствован, и вращающийся цилиндр заменен пластинкой, на которую заранее были нанесены борозды одинаковой глубины. Эти борозды образовали сворачивающуюся спираль.

На приготовленной таким образом восковой пластинке производилась запись резцом. Но колебания резца происходили не по глубине, а поперек борозды. Этот прибор изобрел в 1894 году немецкий физик Берлинер. Он был назван граммофоном.

Граммофон имел огромное преимущество перед фонографом Эдисона, так как была открыта возможность копировать звук, записанный на диск.

Первый граммофон

 

В настоящее время запись делают на дисках из мягкого материала. Затем пластинка копируется на металл, а после этого делаются ее оттиски. Таким образом можно получить много экземпляров одной и той же записи звуков и разослать «живые письма» во все части света.

Такое письмо и подарил Эдисон Льву Николаевичу Толстому. Звук по почте был перевезен через океан в Россию. Вместе с «письмом» Толстой получил фонограф и запас восковых валиков для записи звуков. Льву Николаевичу подарок очень понравился. На одном из валиков были записаны его слова, обращенные к ученикам‑школьникам.

И теперь в музее имени великого писателя можно услышать его живую речь.

 








Дата добавления: 2016-01-29; просмотров: 2432;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.068 сек.