Моделирование случайных процессов
Моделирование случайных процессов - мощнейшее направление в современном математическом моделировании.
Событие называется случайным, если оно достоверно непредсказуемо. Случайность окружает наш мир и чаще всего играет отрицательную роль в нашей жизни. Однако есть обстоятельства, в которых случайность может оказаться полезной. В сложных вычислениях, когда искомый результат зависит от результатов многих факторов, моделей и измерений, можно сократить объем вычислений за счет случайных значений значащих цифр.
При вероятностном моделировании используют различные методы, которые позволяют решать задачи из различных областей. Ниже перечислены сферы применения вероятностных методов.
Метод статистического моделирования: решение краевых задач математической физики, решение систем линейных алгебраических уравнений, обращение матриц и сводящиеся к ним сеточные методы решения систем дифференциальных уравнений, вычисление кратных интегралов, решение интегральных уравнений, задач ядерной физики, газовой динамики, фильтрации, теплотехники.
Метод имитационного моделирования: моделирование систем массового обслуживания, задачи АСУ, АСУП и АСУТП, задачи защиты информации, моделирование сложных игровых ситуаций и динамических систем.
Метод стохастической аппроксимации: рекуррентные алгоритмы решения задач статистического оценивания.
Метод случайного поиска: решение задач оптимизации систем, зависящих от большого числа параметров, нахождение экстремумов функции большого числа переменных.
Другие методы: вероятностные методы распознавания образов, модели адаптации, обучения и самообучения.
При компьютерном математическом моделировании случайных процессов нельзя обойтись без наборов так называемых случайных чисел, удовлетворяющих заданному закону распределения. На самом деле эти числа генерирует компьютер по определенному алгоритму, т.е. они не являются вполне случайными хотя бы потому, что при повторном запуске программы с теми же параметрами последовательность повторится; такие числа называют "псевдослучайными".
Для не слишком требовательного пользователя обычно достаточны возможности датчика (генератора) случайных чисел, встроенного в большинство языков программирования. Так, в языке Паскаль есть функция random, значения которой - случайные числа из диапазона [0, 1]. Ее использованию обычно предшествует использование процедуры randomize, служащей для начальной 'настройки" датчика, т.е. получения при каждом из обращений к датчику разных последовательностей случайных чисел. Для задач, Решение которых требует очень длинных некоррелированных последовательностей, вопрос осложняется и требует нестандартных
Дата добавления: 2015-12-22; просмотров: 728;