Схема асинхронного регульованого приводу електрошпинделем з вентильним перетворювачем частоти.

19. Розрахунок потужності двигунів свердлильних і розточувальних верстатів.

20. Перевірка електродвигунів приводу металорізальних верстатів на жорсткість механічної характеристики та перевантажувальну здатність.

21. Класифікація метало ріжучих верстатів. Основні та допоміжні рухи. Вимоги до приводів основних і допоміжних рухів.

22. Розрахунок потужності двигуна головного приводу фрезерного верстату.

23. Розрахунок потужності двигунів приводів подачі фрезерних верстатів.

24. Схеми управління електроприводом вертикально-фрезерного верстату.

25. Типові схеми заміни контактно-релейних схем управління на безконтактне управління.

26. Галузь застосування промислових роботів.

27. Апарати управління в системах керування: їх призначення, принцип дії і способи включення.

28. Умови вибору апаратів керування і захисту в схемах електроустаткування.

29. Умови вибору живлячих кабелів для металообробних верстатів.

30. Типові зв’язки в системах управління електроприводом.

31. Схеми узгодження роботи головного приводу та приводу подачі верстата.

32. Розрахунок потужності двигуна насосу охолодження.

 

Розділ 3. «Електроустаткування підйомно-транспортного обладнання»

Тема 3.1. Електроустаткування і схеми керування мостовими кранами.

1.Загальні відомості про підйомні крани.

Крани належать до великої групи вантажопіднімальних машин, в яку входять також електричні талі, навантажувачі, мостові крани, підойми тощо.

Електричні підйомні крани – це пристрої, яки служать для вертикаль -ного і горизонтального переміщення вантажів.

Режими роботи електроустаткування кранів є типовими і, як правило, загальними для механізмів цієї групи. Тому вони докладно розглядаються в даному розділі.

Найбільш розповсюджені типи кранів умовно поділяють на мостові, кабель-крани, стрілові, консольні, крани-штабелери, електричні візки і пересувні талі. В залежності від використання в технологічному процесі вони можуть мати різні захоплювальні пристосування: гаки, грейфери, магніти тощо.

Мостові крани (підойми) за виконуваними функціями поділяють на цехові, козлові і мостові перевантажувачі. Перші використовуються для вико -нання різних технологічних і монтажних операцій; другі — для виконання складальних і монтажних операцій; треті застосовуються на рудних дворах і вугільних складах.

Кабель-крани звичайно використовуються на будівельних майданчиках, де необхідно транспортувати вантажі через наявні перешкоди: ріки, рови тощо.

Крани-штабелери з вилковим захоплювачем вантажністю 0,125 12,5 т бува- ють опорні і підвісні, котрі мають механізми підіймання, пересування моста і візка, а також обертання колони; стелажні, які мають механізми підіймання, пересування і висування телескопічного захоплювача. Вони призначені для виконання вантажно-розвантажувальних і транспортних робіт на складах зі штучними виробами і тарою.

До стрілових кранів відносять портальні, баштові і самохідні (автомо - більні, залізничні, гусеничні і плавальні) крани. Ці крани застосовують в портах, на кораблебудівних заводах, на будівництві будинків і там, де не вимагається систематична робота крана.

Крім того, використовують спеціальні крани, такі, як: металургійні (ливарні) крани для виконання операції розливання рідкого металу в ливарних цехах, з головним і допоміжним підоймами, розташованими на окремих візках; колодязні крани, призначені для роботи в цеху з нагрівальними колодязями у вальцювальному виробництві; мульдоза - валювальні крани, що застосовуються для завантаження шихти в мартенівські й електросталеплавильні печі тощо.

Електричні візки випускаються з вантажністю від 3 до 10 т, зі швидкостями підіймання 16 і 8 м/хв. і пересування 75 та 30 м/хв.; пересувні талі - вантажністю від 1,5 до 10 т зі швидкостями підіймання 8 м/хв і переміщення 20 м/хв; однобарабанні лебідки зі стискувальним зусиллям 1 і 5 т, зі швидкос- тями линви 0,13 та 17 м/с, а також вантажністю від 30 до 75 т, зі швидкостями підіймання відповідно 1,85 і 1,47 м/хв. Талі і лебідки звичайно використовують у тих випадках, коли є необхідним встановлення підіймального пристрою для виконання монтажних і ремонтних робіт.

По вантажності крани поділяються:

- мали – 5 – 10 т;

- середні – 10 – 25 т;

- крупні - > 50т.

Загальна будова мостового крана.

Рис. 3.1. Загальна будова мостового крана.

1 – несучі колони; 2, 13 – кінцеві балки; 3 – люк кабіни; 4 – електрошафи з апаратурою керування і захисту; 5 – візок; 6 – барабан лебідки; 7 – електродвигун підйому; 8 – редуктор лебідки; 9 – електродвигун механізму переміщення візка; 10 – редуктор приводу візка; 11 – допоміжні тролеї; 12 – ведучі колеса візка; 14 – редуктор приводу моста; 15 – ходові колеса моста; 16 – підкранові путі; 17 – головні тролеї; 18 – трансмісійний вал; 19 – електродвигун приводу моста; 20 – рейки візка; 21 – ящики резисторів; 22 – рухомі блоки поліспасту; 23 – гаковий захват; 24 – підйомні канати; 25 – ферма (головна балка) моста; 26 – контролери керування; 27 – кабіна оператора.

 

Електропостачання крана здійснюється за допомогою струмоприймачів від головних тролеїв, яки прокладені вздовж кранового путі. Електроживлення візка з лебідкою здійснюється за допомогою допоміжних тролеїв або гнуч - ким кабелем.

2.Склад електрообладнання мостового крана.

Рис. 3.2. Основне кранове електро -

Обладнання.

 

1–електродвигун приводу візка; 2 – електромагніт гальма візка; 3 - електродвигун приводу лебідки; 4 - електромагніт гальма лебідки; 5 – кінцевий вимикач підйому; 6 – блок кінцевих вимикачів моста; 7 - блок кінцевих вимикачів візка; 8 – шафа магнітного контролера приводу лебідки; 9 - електродвигун приводу моста; 10 - електромагніт гальма моста; 11 – пускорегулювальні резистори; 12 – контролер приводу візка; 13 – командо- контролер приводу лебідки; 14 - контролер приводу моста; 15 – захисна панель; 16 - кінцевий вимикач люка кабіни; 17 – щиток допоміжних мереж; 18 – мережі живлення основного освітлення; 19 – мережа живлення аварійного освітлення.

 

3.Кранові гальмівні пристрої і вантажні електромагніти.

Гальмівні пристрої (ГП) призначені для фіксації положення механізму при відключеному двигуні приводу, - для утримання вантажу на вису і скоро -чення вибігу при зупинці механізму.

У сучасних приводах кранів, з метою підвищення продуктивності і безпеки експлуатації на всіх механізмах, крім електричного гальма, повинно бути передбачене механічне гальмо. Механізми підйому забезпечуються тільки гальмами, що автоматично замикаються при зникненні струму (нормально замкнуті). Механізми ж переміщення кранів і візків повинні бути обладнані автоматичними чи керованими гальмами нормально замкненого чи комбіно - ваного типу. Гальма механізмів підйому розраховують за гальмівним моментом, який забезпечує утримання 125 % номінального вантажу в процесі його зупинки.

По конструкції механічної частини ГП поділяються:

- колодкові; - дискові; - стрічкові.

В якості приводу гальм використовуються:

- гальмівні електромагніти; - електрогідравлічні штовхачі.

Гальмівні електромагніти по виду електроживлення можуть бути однофаз – ними, трифазними і постійного струму.

Гальмівні електромагніти постійного струму можуть бути з котушками паралельного і послідовного включення.

Котушки електромагнітів змінного струму підключаються паралельно статору асинхронних двигунів.

Загальним недоліком гальмівних електромагнітів є різке включення, що знижує надійність гальмівного пристрою.

Електрогідравлічні штовхачі мають більшу надійність і можливість регу -лювати швидкодію і плавність гальмування.

 

Вантажні електромагніти.

Вантажні електромагніти призначені для переміщення вантажів з феромаг- нітних матеріалів.

Конструктивно вантажний електромагніт складається з корпусу, в середині якого поміщується котушка залита компаундною масою. Струмопідвід від джерела постійного струму здійснюється гнучким кабелем з кабельного барабану.

Котушки вантажного електромагніту мають значну індуктивність, тому вони мають потік залишкового магнетизму. В зв’язку з цим при відключенні електромагніту необхідно передбачати міри для обмеження ЕРС самоіндукції і для звільнення вантажів як великої так і малої ваги. Для цього передбачена схема розмагнічування полюсів електромагніту з використанням електромаг- нітної енергії котушки (рис. 3.3.б).

Рис. 3.3. Конструкція (а) і схема керування вантажним електромагнітом (б).

Робота схеми.

Захват вантажу: при включенні SA2 спрацьовує контактор КМ, який включає обмотку YA вантажного електромагніту до мережі і розмикає коло котушки контактора розряду КМ1.

Звільнення вантажу: при виключенні SA2 КМ знімає живлення з YA і вмикає коло КМ1. Струм самоіндукції, який проходить через R1, R2 і R3, на резисторах R2 і R3 створює падіння напруги, яким заживлюється обмотка КМ1, а він заживлює обмотку YA напругою зворотної полярності. Тривалість перемагнічування встановлюється резисторами R2 і R3.В процесі зменшення струму самоіндукції КМ1 відпускає і котушка розряджається через резистори.

 

4.Електропривод механізмів підйомних кранів.

Кранові механізми працюють у різноманітних умовах: від легких - у механічних цехах, до дуже важких - у ливарних і металургійних цехах. Для механізмів типових кранів характерні наступні режими роботи з різними значеннями відносної тривалості вмикання (ТВ):

I - легкий (Л) з 7В = 15 - 25 % (до 60 вмик./год.),

II - середній (С) із ТВ = 25 % (до 120 вмик./год.),

III - важкий (В) із ТВ = 40 % (до 240 вмик./год.),

IV - дуже важкий (ДВ) із ТВ = 60 % (до 600 вмик./год.).

Режим ще більш складних, ніж ДВ, умов роботи, де відносна тривалість вмикання механізму може досягати 100 %, називають особливо важким (ОВ).

 

Вимоги до систем електроприводу кранових механізмів

До електроприводів кранів, крім загальних, ставлять спеціальні вимоги, обумовлені особливостями роботи їх механізмів а саме:

- забезпечення необхідного діапазону регулювання швидкості обертання;

- обмеження прискорень;

- забезпечення необхідних механічних характеристик двигунів;

- наявність механічних гальм.

Перші три вимоги залежать від призначення механізмів крана і їх вантаж - ності, а також від тієї ролі, яку відіграє кран у технологічному процесі.

Спеціальні вимоги. Відомо, що важко установлювати великі вантажі в порівнянні з легкими; тому посадні швидкості механізмів підйому кранів великої вантажності перед зупинкою механізмів переміщення повинні бути малими, щоб забезпечити потрібну точність установки вантажів. Так, наприклад, посадна швидкість суднобудівних, монтажних і козлових кранів вантажністю ЗО - 80 т повинна складати 0,25 - 0,45 м/хв, щоб забезпечити точність установки вантажів 2-5 мм. Посадні ж швидкості подібних кранів меншої вантажності (3 - 25 т) і такої ж точності установки вантажів (5 - 10 мм) становлять 0,6 - 1,0 м/хв. Посадна швидкість будівельних кранів вантажністю 10 - 25 т з точністю установки блоків 5-10 мм дорівнює 1-1,5 м/хв., а вантажністю до 5 - 8 т з точністю установки блоків ЗО - 50 мм дорівнює 2-4 м/хв.

В більшості кранових механізмів для забезпечення потрібної посадної швидкості достатнім є використання для кожного руху природну й одну штучну характеристику. І лише для особливо точної установки вантажів, транспортування рідких металів і тендітних предметів потрібно мати плавне або багатоступеневе регулювання швидкості обертання двигунів механізму на достатньо жорстких механічних характеристиках. Проміжні характерис -тики застосовуються для обмежень прискорень під час розгону і гальмування електроприводів. Тому діапазон регулювання швидкості обертання електродвигунів підіймальних механізмів коливається в межах від 4:1 до 50:1, а механізмів переміщення і повороту - від 4:1 до 70:1.

Для підвищення продуктивності кранів бажано, щоб їх номінальні швидкості були досить великими, а, оскільки моменти інерції, приведені до вала двигуна всіх кранових механізмів і вантажів, набагато більші від моментів інерції ротора чи якоря двигуна, і число вмикань у годину коливається від 20 - 30 до 200 – 500 і більше, бажано мати і великі прискорення механізмів під час розгону і гальмування. Зате великі швидкості і прискорення призводять до перевантаження в ланках механізмів, розгойдування вантажу, виникнення пружних коливань системи і пробуксовування коліс механізмів переміщення, причому амплітуди розгойдування і пружних коливань залежать від багатьох факторів, у тому числі від довжини підвішування вантажу (l), початкової (Vпоч.) і кінцевої (Vкін.) швидкостей точки підвішування в період розгону механізму.

Наприклад, при горизонтальному переміщенні максимальне відхилення вантажу від вертикалі стається тоді, коли пуск механізму здійснюється відразу до великої швидкості.

Для розгону і гальмування механізмів переміщення без пробуксовування коліс необхідно, щоби сила тяги не перевищувала сили зчеплення коліс з рейками.

Зазначені фактори призводять до необхідності обмеження номінальних швидкостей і допустимих прискорень кранових механізмів. На підставі дос -віду експлуатації кранів рекомендується приймати такі прискорення:

а) для механізмів підіймання мостових кранів: загального призначення - 0,2 м/с2 монтажних кранів – 0,1 м/с2, перевантажувальних грейферних кранів - 0,8 м/с2

б) для механізмів пересування кранів і візків: мостових кранів загального призначення - 0,2 м/с2, монтажних кранів -0,15 м/с2, козлових кранів - 0,1 м/с2, грейферних візків - 0,8 м/с2.

Крім того, прискорення механізмів також може бути обмежене в залежності від типу вантажів і, наприклад, для перевезення рідких металів і тендітних предметів воно не повинно перевищувати 0,1 - 0,2 м/с2. Щоб забезпечити ці обмеження прискорень, тривалість пуску у типових системах керування становить 4 - 6 с.

Під час гальмування ж прискорення може бути більшим у 1,3 - 1,6 рази, ніж під час пуску.

Тому якщо не висуваються підвищені вимоги для забезпечення посадної швидкості чи зменшення прискорень в перехідних процесах, то для збільшення продуктивності кранів перевагу варто віддати двигунам з м'якою механічною характеристикою, тоді як для обслуговування технологічних операцій, що вимагають високої точності уставляння вантажів - двигунам з жорсткою механічною характеристикою.

Електроприводи для кранових механізмів виготовляють як змінному, так і на постійному струмі: перші - на базі асинхронних двигунів з фазним чи з короткозамкненим ротором, а другі - на базі двигунів паралельного, послі -довного чи змішаного збудження. Напруга живлення двигунів змінного струму - не більша 660 В, а постійного струму -до 600 В.

Механізми кранів працюють у важких атмосферних умовах при повторно-короткочасному режимі з великим числом вмикань за годину. Тому для них випускаються спеціальні кранові і металургійні електродвигуни з підвище -ною перевантажувальною здатністю, високою механічною міцністю і зі зменшеною електромеханічною (динамічною) сталою часу.

Раніше у приводах кранових механізмів широко застосовувалися двигуни постійного струм серії ДП і змінного струму серій МТ і МТК, В даний час ці двигуни замінені крановими і металургійними двигунами постійного струму серії Д (з послідовним, змішаним чи з паралельним збудженням), змінного струму з фазним ротором серій МТF і МТН, і з короткозамкненим ротором серій МТКF і МТКН, причому двигуни змінного струму використовуються набагато частіше (майже у 90 % кранових електроприводів). У двигунів серій Д, МТН і МТКН ізоляція класу Н, а серій МТF і МТКF - класу F.

Конструктивно вони виконуються закритими з продуванням і з охолоджен -ням ззовні.

Двигуни постійного струму серії Д виготовляються на напруги 220 і 440 В, потужністю 2,4 - 106 кВт для ТВ = 40 % і частоти обертання 1550 - 460 хв-1 з ймовірністю безвідмовної роботи 0,98 за три роки експлуатації і 0,92 за п'ятнадцять років експлуатації. Кранові двигуни серій МТF і МТКF виготовляються на напруги 220/380 і 500 В змінного струму частотою 50 Гц із синхронними частотами обертання 1000, 750 і 600 хв-1 потужністю 1,4-30 кВт (МТF) і 1,4 - 26 кВт (МТКF) для ТВ = 40 %; металургійні двигуни серій МТН і МТКН — на напруги 220/380, 240/415, 400 і 500 В того ж струму і з тими ж частотами обертання, потужністю 3-160 кВт (МТН) і 3 - 37 кВт (МТКН) для ТВ = 40 %; середній коефіцієнт потужності двигунів з фазним ротором складає 0,72, короткозамкнених - 0,76.

Серед двигунів цих же серій випускаються дво- та тришвидкісні двигуни з числом пар полюсів 4/12, 4/24, 1/8/24 (МТКF) і 6/12, 6/16, 6/20 (МТКН), в яких реалізовано принцип керування з постійним моментом і які мають потужність (з меншим числом пар полюсів), що відповідає основній шкалі потужностей одношвидкісних двигунів. Для вказаних двигунів основним режимом роботи є повторно-короткочасний з величиною ТВ - 40 %. Крім того, у каталогах наводяться технічні дані цих двигунів для режимів роботи з ТВ =15, 25, 60 і 100 %. Слід зауважити, що одношвидкісні двигуни можуть працювати ще й при короткочасних режимах протягом 30 і 60 хв. з потужностями, що відповідають основній шкалі з ТВ = 25 і 40 %.

Згідно зі стандартом, кранові двигуни можуть використовуватися для роботи в наступних режимах: S3 - повторно-короткочасному з ТВ - 15, 25, 40 і 60 % з тривалістю циклу 10 хв, і S2 - в короткочасному режимі.

Випускаються електродвигуни серії 4МТ потужністю до 200 кВт з ймовірністю безвідмовної роботи за три роки експлуатації до 0,96 для кранового виконання і 0,98 для металургійного виконання протягом трьох років роботи.

Перевантажувальна здатність за моментом двигунів постійного струму становить приблизно 2,5 - 3,0 для двигунів паралельного збудження, 3,5 - 4,0 для двигунів змішаного збудження і 4,0-4,5 для двигунів послідовного збудження.

Пускові моменти кранових двигунів змінного струму з короткозамкненим ротором складають (2,5 - 3,3) Мном, а максимальні -(2,6 - 3,6) Мном ; пускові моменти двигунів з фазним ротором можуть бути рівні максимальним і становлять (2,3 - 3,0) Mном.

З метою вилучення механічної передачі і збільшення прискорення під час розгону механізмів переміщення електричних візків (талів) та інших схожих пристроїв, які переміщаються по монорельсових шляхах, останнім часом ведуться роботи щодо використання лінійних асинхронних двигунів (ЛАД). Уже розроблено цілий низку таких двигунів різних типів на потужності до кількох сотень кіловат, але коефіцієнт потужності і ККД (коефіцієнт корисної дії) їх є меншими, ніж в обертових двигунів.

 

 

Статичні навантаження двигунів механізмів крану.

Статичні навантаження створюються:

- силами ваги і тертя для механізмів підйому;

- силами тертя для механізмів переміщення.

Підйом вантажу.

Статична потужність Рс.п. на валу двигуна в усталеному режимі при підні -манні вантажу витрачається на переміщення вантажу з встановленою швид –кістю і подолання сил тертя:

Рс.п. = [(G + G0)·Vп/η] · 10-3, кВт, де

G – сила тяжіння вантажу, Н;

G0 – сила тяжіння (вага) вантажозахватного пристрою, Н;

Vп – швидкість підйому вантажу, м/с;

η – загальний ККД механізму лебідки.

Мс.п. = (G + G0)·D/ір·іп ,де

D – діаметр барабану лебідки;

ір – передавальне число редуктора;

іп - передавальне число поліспасту.

Підйом порожнього гака:

Рс.п.0 = (G0 · Vп.0/ η0) ·10-3 ,кВт.

Силовий спуск має місце при спуску порожнього гака і легких вантажів, сила тяжіння яких не здатна подолати сили тертя в механізмі, і опускання вантажу здійснюється двигуном на реверсі, який створює рушійний момент.

Рс.с. = (G + G0)· Vс ·(1/ η – 2) ·10-3,кВт , де η ≤ 0,5.

Гальмівний спуск використовується при опусканні середніх і важких ванта -

жів. Енергія направлена з валу механізму до двигуна, який створює галь -мівний момент і попереджує вільне падіння вантажу і обмежує швидкість спуску.

Рс.с.= (G + G0)· Vс(2- 1/ η) ·10-3, кВт, де η ≥ 0,5.

Для механізмів переміщення кранів потужність двигуна витрачається на подолання сил тертя.

,де

k1- коефіцієнт, який враховує тертя реборд коліс по рейкам;

Rх.к.- радіус ходових коліс, м;

µ - коефіцієнт тертя в опорах ходових коліс;

f – коефіцієнт тертя кочення ходових коліс по рейкам.

Статичний момент на валу двигуна лебідки або механізму переміщення:

,Н·м

Розрахункова кутова швидкість двигуна:

ω дв.р.= Vном·ір·іп/R ,рад/с.

Динамічне навантаження двигуна:

,де

JΣ – сумарний, приведений до валу двигуна момент інерції, кг·м2;

dω/dt – кутове прискорення, рад/с.

При розрахунках: JΣ =k · Jдв.+ [mΣ(V/ωдв)2]/η,де mΣ – сумарна маса рухо -мих частин і вантажу.

 

Вибір потужності двигуна.

Вибір потужності двигуна виконується по навантажувальним діаграмам : Рс = f(Т) або Мс = φ(Т). При цьому визначається значення еквівалентної потужності (еквівалентного моменту):

.

Вибір двигуна по каталогу при ТВном. виконується по умовам:

Рн ≥ kз · Рекв. , де kзкоефіцієнт запасу, який враховує додаткове заванта - ження двигуна під час пуску і гальмування.

Перевірка двигуна по умовам короткочасного тимчасового перевантаження і надійності пуску:

λ ·Мном .≥ Мс.maxдля електродвигунів з фазним ротором і двигунів постійного струму,

0,8λ ·Мном .≥ Мс.maxдля електродвигунів з короткозамкненим ротором.

Час пуску і гальмування визначається за формулою: .

Номінальна кутова швидкість повинна відповідати заданий номінальний швидкості механізму: ω дв.р.= Vном·ір·іп/R ,рад/с.

 

 

5.Кранова апаратура керування і захисту.

1. Кранові силові контролери призначені для здійснення пуску, зупинки, реверсування і регулювання кутової швидкості кранових електродвигунів. Використання силових контролерів обмежено потужністю двигуна і режи –мом роботи кранів, що обумовлено їх комутаційними можливостями.

2. Магнітні контролери використовують у випадку, коли силові контролери вичерпують свої можливості. Вони являються більш універсальними засоба –ми керування крановими електроприводами.

Діапазони використання приведені в табл. 2.2.

Табл. 3.1.

Потужність двигуна, кВт Тип контролера в режимі роботи
легкий середній важкий дуже важкий
до 10 силовий силовий силовий магнітний
до 30 силовий силовий магнітний (силовий) магнітний
більше 30 силовий Магнітний (силовий) магнітний магнітний

 

Типи силових контролерів:

ККТ- 61; ККТ-61А; ККТ-62; ККТ-62А; ККТ-68А; ККТ-101; ККТ-102 – з симетричною системою контактів, для керування асинхронними двигунами з фазним ротором.

ККТ-63; ККТ-64 – для керування асинхронними двигунами короткозамкне -ним ротором.

ККП-101; ККП-102 – для керування двигунами постійного струму.

Типи магнітних контролерів:

сер. П – для силових кіл і кіл керування постійного струму;

сер. Т – для силових кіл і кіл керування змінного струму; симетричні

сер. К – для кіл керування постійного струму;

сер. ПС, ТС, КС – несиметричні.

3. Кранові кінцеві і шляхові вимикачі (КВ) призначені для попередження переходу механізмами граничнодопустимих положень, а також блокувань.

Типи КВ: КУ-701; КУ-706 – важільні з самоповерненням для мостів і візків.

КУ-703 – з самоповерненням для лебідок.

4. Резистори призначені для пуску, регулювання кутової швидкості і галь – мування двигунів, для кіл збудження і керування.

Резистори конструктивно оформлені в вигляді секціонованих ящиків. В якості матеріалу резисторів використовують: чавун (сер. ЯС); фехраль (сер. КФ); константан (сер. НС).

На практиці при виборі резисторів користуються каталогами, таблиці яких складено стосовно до типових схем контролерів.

Для двигунів постійного струму: Rном.= Uном./ Iном.

Для асинхронних двигунів з фазним ротором: , де

Е – ЕРС між кільцями нерухомого розімкнутого ротора,

І2ном. – номінальний струм ротора.

ТВ резисторів залежить від режиму роботи кранів:

Л – 12,5%; С – 25%; В, ДВ – 30%.

Вибір резисторів по нагріву виконується для кожного ступеню по еквіва -лентному довготривалому струму, який визначається за формулою:

, де

Ір - = kн·І2ном. – розрахунковий струм ступеню;

для ступенів прискорення = 1,25;

kн – поправочний коефіцієнт: - для ступенів противключення = 1,0;

для попередньої ступені = 0,8.

 

5. Кранові захисні панелі призначені для розміщення апаратів захисту від

струмів КЗ двигунів від перевантажень (>250%) і для здійснення нульового захисту, який запобігає самозапуск двигунів при перебоях в електропоста -чанні.

Кранові захисні панелі використовують при контролерному керуванні, а також з деякими типами магнітних контролерів, які не мають власних апа -ратів захисту. Кранові захисні панелі працюють разом з апаратами допо –міжної групи попередження виходу механізмів за межи робочої зони і блокувань (кінцеві і шляхові вимикачі, допоміжні контакти контролерів).

Типи кранових захисних панелей:

ПЗКБ-160, ПЗКБ-400 на напругу 220, 380 і 500 В змінного струму;

ППЗКБ-150 на 220 і 440 В постійного струму.

Схема захисної панелі т. ПЗК (рис.3.4):

Рис. 3.4. Схема захисної панелі

Типу ПЗК.

КМ – лінійний контактор;

SA1-1 SA2-1 SA3-1 КА – реле максимального струму;

SA – аварійний вимикач;

SA1-1 – контролер лебідки;

SA2-1 – контролер візка;

SA3-1 – контролер моста;

SВ1 – кнопка запуску панелі;

SQ1 – кінцевий вимикач люку

кабіни;

SQ2 – кінцевий вимикач

лебідки;

SQ3, SQ4 – шляхові вимикачі

візка;

SQ4, SQ5 – шляхові вимикачі

моста;

FU1, FU2 – запобіжники.

 

 

Схема ПЗК складена таким чином, що пуск двигуна можливий лише в сторону робочої зони (за допомогою кінцевих і шляхових вимикачів).

Наприклад: при встановленні контролера моста в положення «В» (вперед) контакт 3-4 розмикається, а 4-5 лишається замкнутим, тому котушка КМ отримує живлення тільки через контакти SQ4 і буде відключена якщо міст дійде до крайнього положення «вперед».

Нульовий захист забезпечується лінійним контактором КМ. Після спрацю - вання будь якого з апаратів захисту або шляхових вимикачів схему можна увімкнути в роботу тільки після повернення всіх контролерів в нульове положення.

 

Схема захисної панелі т. ППЗК (Рис. 3.5).

Рис. 3.4. Схема захисної панелі

Типу ППЗК.

 

КА – реле максимального струму;

КМ – лінійні контактори;

SA – аварійний вимикач;

SA1 – контролер моста;

SA2 – контролер візка;

SA3 – контролер лебідки;

SВ1 – кнопка запуску панелі і

блокування включення КМ1-КМ3;

SQ1, SQ2 – шляхові вимикачі

моста;

SQ3, SQ4 – шляхові вимикачі

візка;

SQ5 – кінцевий вимикач лебідки.

YAN – гальмівні електромагніти.

SA4 – ввідний вимикач;

FU – запобіжники.

 

 

6.Електричні схеми контролерного керування двигунами кранових

механізмів.

Керування електроприводами кранових механізмів здійснюється з пульта, а окремими приводами кожного механізму - за допомогою контактних чи безконтактних апаратів.

Асинхронні двигуни з короткозамкненим ротором можуть бути як одношвидкісні, так і багатошвидкісні. Перші знайшли найбільше застосування в приводах електричних талей, кран-блоків, монорельсових візків, різних лебідок і доволі часто застосовуються в приводах кранів, що працюють у вибухо- і пожежо-небезпечних приміщеннях; другі - у приводах суднових кранів і загальнопромислових кранів з легкими режимами роботи. Керування одношвидкісними асинхронними двигунами може здійснюватися кулачковими контролерами типу ККТ63А або магнітними пускачами, а багатошвидкісними - магнітними станціями. У тому випадку, коли потрібно забезпечити невеликий діапазон регулювання швидкості обертання кранового механізму, що характерне для найбільш розповсюджених кранів, використовують асинхронні двигуни з фазним ротором або двигуни постійного струму з послідовним збудженням, керування якими в багатьох випадках здійснюється за допомогою контактних контролерів. Пуск, гальмування і ступеневе регулювання швидкості обертання в цьому випадку здійснюються зміною додаткового опору в колах обмоток ротора чи якоря електродвигунів. Регулювання в цьому випадку здійснюється з постійним моментом. На теперішній час близько 80 % кранових електроприводів працює з фазними асинхронними електродвигунами, а тому на ці електроприводи має бути звернена особлива увага.

В даний час випускаються кулачкові (до 300 вмик./год.) і звичайні магнітні (до 1 200 вмик./год.) контролери, а для механізмів підіймання, які працюють на змінному струмі - кулачкові і магнітні контролери, що допускають динамічне гальмування з самозбудженням. Магнітні контролери виготовляються на великі потужності і значний термін служби, ними легше керувати, вони забезпечують автоматичний пуск і гальмування електродвигунів.

Контролери випускаються симетричними (для механізмів горизонтального переміщення і повороту, схеми вмикання яких в обидва боки однакові) і несиметричними (для механізмів підіймання, де в сторону опускання й підіймання схеми вмикання різні).

Кулачкові (силові) й магнітні контролери, що не мають захисної і комутаційної апаратури, вмикаються в мережу через захисні панелі, а магнітні контролери, що мають таку апаратуру - безпосередньо. В даний час випускаються захисні панелі типу ПЗК та ПЗКБ для одночасного під'еднання декількох двигунів змінного струму і типів ППЗК та ППЗБ для під'еднання двигунів постійного струму на стандартні напруги до 500 В.

Силові кулачкові контролери випускаються для перемикань як в колах постійного струму з напругою 220 і 440 В (типів ККП і KB І), так і в колах змінного струму (типу ККТ) на стандартні напруги 220 і 380 В.

Електроприводи з контролерами без динамічного гальмування забезпечують діапазон регулювання швидкості обертання в межах 2,5:1 -^ 4:1, а з динамічним гальмуванням із самозбудженням — до 8:1. Кожен кулачковий контролер, як правило, керує одним двигуном. Винятком є кулачковий контролер ККТ62. який допускає керування двома двигунами механізмів переміщення.

Електроприводи із силовими кулачковими контролерами призначені для використання в механізмах з легкими і середніми режимами роботи і тільки при значному зниженні потужності статичного навантаження вони можуть застосовуватися в механізмах з важкими режимами роботи. Потужності керованих ними двигунів у легких і середніх режимах не перевищують 30 кВт (з ТВ = 40%). а в окремих випадках - 45 кВт.

Номінальні потужність кулачкового контролера визначають як потужність керованого ним двигуна з номінальною напругою і струмом в режимі роботи з ТВ = 40 % при загальній тривалості кожного циклу не більше 4 хв.

 

1. Схема для керування двигуном постійного струму послідовного збудження зображена на рис. 3.5, - принципова схема контролера типу ККП-102 і одержані при цьому характеристики двигуна в різних положеннях рукояті керування для підіймання й опускання вантажу. Контролер живиться від мережі через захисну панель.

На схемі напруга до двигуна підводиться за допомогою лінійних контакторів: загального КЛЗ і підіймання КЛП, які, крім того, забезпечують захист схеми від перевантажень і коротких замикань. Під час підіймання вантажу якір електродвигуна і його обмотка збудження ввімкнені послідовно, а швидкість обертання двигуна регулюється зміною опору резисторів R2 - R5. В процесі опускання вантажу електродвигун вмикається за схемою безпечного опускання, в котрій якір і обмотка збудження з'єднані паралельно, а швидкість обертання регулюється зміною опору резисторів Rl - R5. В такій схемі швидкість опускання вантажу та швидкість неробочого ходу обмежується на всіх характеристиках опускання і завдяки цьому виключається вільне падіння вантажу з моментом навантаження, який перевищує втрати потужності в механічній передачі.

Зупинка вантажу під час підйому й опускання здійснюється переведенням рукояті контролера в нульове положення, в якому котушка електромагнітного гальма ЕГ втрачає живлення, на гальмівний шків накладаються гальма, причому під час опускання вантажу механічне гальмування доповнюється електричним, що підвищує інтенсивність гальмування та знижує зношування гальмівних колодок. У нульовому положенні рукояті контролера двигун від'єднується від мережі і, замикаючись на резистор R6, переводиться в режим динамічного гальмування із самозбудженням, що у свою чергу виключає падіння вантажу при зникненні напруги живлення.

Для підготовки схеми до роботи необхідно увімкнути вимикач В, аварійний вимикач ВА і натиснути кнопку КнР. Після цього першим вмикається спільний контактор КЛЗ. а коли кнопка КнР буде відпущена, спрацює контактор підіймання КЛП.

Зі зникненням напруги живлення або від'єднанні схеми з інших причин. її можна привести в робочий стан тільки після переведення рукояті командо - контролера в нульове положення.

 

 

Рис. 3.5. Схема керування двигуном

постійного струму кулачковим








Дата добавления: 2015-12-22; просмотров: 1935;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.099 сек.