ФИЗИОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ПАМЯТИ

В формировании и осуществлении высших функций мозга очень важное значение имеет общебиологическое свойство фиксации, хранения и воспроизведения информации, объединяемое понятием память. Память как основа процессов обучения и мышления включает в себя четыре тесно связанных между собой процесса: узнавание, запоминание, хранение, воспроизведение. На протяжении жизни человека его память становится вместилищем огромного количества информации: в течение 60 (и более) лет активной творческой деятельности человек способен воспринять более триллиона бит информации, из которой реально используется не более 5-10%. Это указывает на значительную избыточность памяти и важное значение не только процессов памяти, но и процесса забывания. Не все, что воспринимается, переживается или делается человеком, сохраняется в памяти, значительная часть воспринятой информации со временем забывается. Забывание проявляется в невозможности узнать, припомнить что-либо или в виде ошибочного узнавания, припоминания. Причиной забывания могут стать разные факторы, связанные как с самим материалом, его восприятием, так и с отрицательными влияниями других раздражителей, действующих непосредственно вслед за заучиванием (феномен ретроактивного торможения, угнетения памяти). Процесс забывания в значительной мере зависит от биологического значения воспринимаемой информации, вида и характера памяти. Забывание в ряде случаев может носить положительный характер, например память на отрицательные сигналы, неприятные события. В результате процесса научения возникают физические, химические и морфологические изменения в ЦНС, которые сохраняются некоторое время и оказывают существенно влияние на осуществляемые организмом рефлекторные реакции Совокупность таких структурно-функциональных изменений нервных образованиях, известная под названием «энграмма» (след) действующих раздражителей становится важным фактором, определяющим все разнообразие приспособительного адаптивного поведения организма.

Виды памяти классифицируют:

1) по форме проявления (образная, эмоциональная, логическая, или словесно-логическая);

2) по временной характеристике, или продолжительности (мгновенная, кратковременная, долговременная);

3) по анализаторам (зрительная, слуховая, кинестетическая).

Образная память проявляется формированием, хранением и воспроизведением ранее воспринятого образа реального сигнала, такой вид памяти лучше выражен у людей с художественным типом ВНД.

Под эмоциональной памятью понимают сохранение и воспроизведение пережитого ранее эмоционального состояния (страх, большая радость, стихийное бедствие и т.д.). Эмоциональная память характеризуется высокой скоростью и прочностью. В этом, вероятно, основная причина более легкого и устойчивого запоминания человеком эмоционально окрашенных раздражителей.

Логическая (словесно-логическая, семантическая) память — память на словесные сигналы, отражающие как внешние воздействия, так и вызванные ими ощущения и представления.

Мгновенная (иконическая) память заключается в образовании мгновенного следа действующего стимула. Этот отпечаток внешнего стимула, отличается высокой информативностыо, полнотой признаков, свойств (отсюда и название «иконическая память», т.е. четко проработанное в деталях отражение) действующего сигнала, но и высокой скоростью угасания; (хранится не более 100–150 мс, если не подкрепляется, не усиливается повторным или продолжающимся стимулом).

Циркуляция возбуждения по цепочке нейронов (1-4) и по одному (3, 5) нейрону; РП — рецептивное поле.

Этот вид памяти формируется на базе следовых явлений рецепторного потенциала. Продолжительность и выраженность этих следовых потенциалов определяется как силой действующего стимула, так и функциональным состоянием, чувствительностью и лабильностью воспринимающих мембран рецепторных структур. Стирание следа памяти происходит за 100–150 мс.

Биологическое значение иконической памяти заключается в обеспечении анализаторных структур мозга возможностью выделения отдельных признаков и свойств сенсорного сигнала, распознавания образа.

Иконическая память при достаточной силе раздражителя переходит в категорию краткосрочной (кратковременной) памяти. Кратковременная память — оперативная память обеспечивает выполнение текущих поведенческих и мыслительных операций. В ее основе лежит повторная многократная циркуляция возбуждения по круговым замкнутым цепям нервных клеток (рис.). Кольцевые структуры могут быть образованы и в пределах одного и того же нейрона путем возвратных сигналов, образуемых концевыми (или боковыми, латеральными) разветвлениями аксонного отростка на дендритах этого же нейрона (И.С.Беритов). В результате многократного прохождения импульсов по этим путям постепенно образуются стойкие изменения, закладывающие основу последующего формирования долгосрочной памяти. В этих кольцевых структурах могут участвовать не только возбуждающие, но и тормозящие нейроны. Продолжительность кратковременной памяти составляет от нескольких секунд (оперативная память) до 45–60 минуты после непосредственного действия соответствующего сообщения, явления, предмета. Реверберационная гипотеза природы кратковременной памяти допускает наличие замкнутых кругов циркуляции возбуждения как внутри коры большого мозга, так и между корой и подкорковыми образованиями (в частности, таламокортикальные нервные круги).

Участие структур гиппокампа и лимбической системы мозга в краткосрочной памяти связано с реализацией этими нервными образованиями функции различения новизны сигналов и считывания поступающей афферентной информации на входе бодрствующего мозга (О.С.Виноградова). Краткосрочная память не требует и реально не связана с химическими и структурными изменениями в нейронах и синапсах, так как для соответствующих изменений в синтезе матричных (информационных) РНК требуется большее время.

Превращение краткосрочной памяти в долговременную (консолидация памяти) обусловлено наступлением стойких изменений синаптической проводимости как результат повторного возбуждения нервных клеток (обучающиеся популяции, ансамбли нейронов по Хеббу). Долгосрочная память (консолидация памяти) обусловлена химическими и структурными изменениями в соответствующих нервных образованиях. В основе консолидации памяти много факторов, приводящих к облегчению передачи импульсов по синаптическим структурам (усиленное функционирование определенных синапсов, повышение их проводимости для адекватных импульсных потоков). Одним из таких факторов может служить феномен посттетанической потенциации, которая достаточно долго (десятки минут) повышает, например, проводимость мотонейронов спинного мозга. Это означает, что физико-химические изменения постсинаптических мембран, могут служить основой для образования следов памяти, в результате изменении белкового субстрата нервной клетки

В механизмах консолидации памяти имеют значение изменения, наблюдающиеся в медиаторных механизмах, например взаимодействие ацетилхолина с рецепторными белками постсинаптической мембраны и ионами (Na+, K+, Са2+). Динамика трансмембранных токов этих ионов делает мембрану более чувствительной к действию медиаторов. Установлено, что процесс обучения сопровождается повышением активности фермента холинэстеразы, разрушающей ацетилхолин, а вещества, подавляющие действие холинэстеразы, вызывают существенные нарушения памяти.

Одной из распространенных химических теорий памяти является гипотеза Хидена о белковой природе памяти (вырабатываются специфические белки). По мнению автора, информация, записывается в структуре полинуклеотидной цепи молекулы Разная структура импульсных потенциалов, в которых закодирована определенная сенсорная информация в афферентных нервных проводниках, приводит к разной перестройке молекулы РНК, к специфическим для каждого сигнала перемещениям нуклеотидов в их цепи. Таким образом, происходит фиксация каждого сигнала в виде специфического отпечатка в структуре молекулы РНК. Можно предположить, что глиальные клетки, трофически обеспечивая нейроны, включаются в метаболический цикл кодирования поступающих сигналов. Весь набор вероятных перестановок и комбинаций нуклеотидных элементов обеспечивает возможность фиксировать в структуре молекулы РНК огромный объем информации: теоретически рассчитанный объем этой информации составляет 1020 бит, что значительно перекрывает реальный объем человеческой памяти. Процесс фиксации информации в нервной клетке находит отражение в синтезе белка, в молекулу которого вводится соответствующий следовой отпечаток изменений в молекуле РНК. При этом молекула белка становится чувствительной к специфическому узору импульсного потока, тем самым она как бы узнает тот афферентный сигнал, который закодирован в этом импульсном паттерне. В результате происходит освобождение медиатора в соответствующем синапсе, приводящее к передаче информации с одной нервной клетки на другую в системе нейронов, ответственных за фиксацию, хранение и воспроизведение информации.

Возможным субстратом долговременной памяти являются некоторые пептиды гормональной природы, простые белковые вещества, специфический белок S-100. К таким пептидам, стимулирующим, например, условнорефлекторный механизм обучения, относятся некоторые гормоны (АКТГ, соматотропный гормон, вазопрессин и др.).

Значительное место в обеспечении нейрофизиологических механизмов долговременной памяти отводится глиальным клеткам – (Галамбус, А.И.Ройтбак), число которых в центральных нервных образованиях на порядок превышает число нервных клеток. Предполагается следующий механизм участия глиальных клеток в осуществлении условнорефлекторного механизма научения. На стадии образования и упрочения условного рефлекса в прилегающих к нервной клетке глиальных клетках усиливается синтез миелина, который окутывает концевые тонкие разветвления аксонного отростка и тем самым облегчает проведение по ним нервных импульсов, в результате чего повышается эффективность синаптической передачи возбуждения. В свою очередь стимуляция образования миелина происходит в результате деполяризации мембраны олигодендроцита (глиальной клетки) под влиянием поступающего нервного импульса. Таким образом, в основе долговременной памяти могут лежать сопряженные изменения в нервно-глиальном комплексе центральных нервных образований.

В клинической практике часто встречаются нарушения памяти. Они могут иметь разнообразную природу происхождения, но если говорить о потере памяти по временным параметрам поступившей информации, то выделяют так называемую «антероградную амнезию», т.е. неспособность к усвоению новой информации или к хранению ее в доступном для извлечения виде. Вторая группа амнезий – это ретроградная амнезия, т.е. неспособность извлечь из памяти информацию, накопленную до момента поражения мозга. Такой вид нарушения памяти часто встречается при сострясении мозга, инсульте, электрошоке и после наркоза.








Дата добавления: 2015-12-11; просмотров: 866;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.