Формула Шеннона

В общем случае, энтропия H и количество получаемой в результате снятия неопределенности информации I зависят от исходного количества рассматриваемых вариантов N и априорных вероятностей реализации каждого из них P: {p0, p1, …pN-1}, т.е. H=F(N, P). Расчет энтропии в этом случае производится по формуле Шеннона, предложенной им в 1948 году в статье "Математическая теория связи".

В частном случае, когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов, т.е. H=F(N). В этом случае формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, т.е. не 20 лет раньше.

 

Формула Шеннона имеет следующий вид:

(1)

 

Знак минус в формуле (1) не означает, что энтропия – отрицательная величина. Объясняется это тем, что pi£1 по определению, а логарифм числа меньшего единицы - величина отрицательная. По свойству логарифма , поэтому эту формулу можно записать и во втором варианте, без минуса перед знаком суммы.

интерпретируется как частное количество информации , получаемое в случае реализации i-ого варианта. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины {I0, I1, … IN-1}.

Приведем пример расчета энтропии по формуле Шеннона. Пусть в некотором учреждении состав работников распределяется так: ¾ - женщины, ¼ - мужчины. Тогда неопределенность, например, относительно того, кого вы встретите первым, зайдя в учреждение, будет рассчитана рядом действий, показанных в таблице 1.

Таблица 1.

pi 1/pi Ii=log2(1/pi), бит pi*log2(1/pi), бит
Ж 3/4 4/3 log2(4/3)=0,42 3/4 * 0,42=0,31
М 1/4 4/1 log2(4)=2 1/4 * 2=0,5
å 1 H=0,81 бит

 

Если же априори известно, что мужчин и женщин в учреждении поровну (два равновероятных варианта), то при расчете по той же формуле мы должны получить неопределенность в 1 бит. Проверка этого предположения проведена в таблице 2.

 

Таблица 2.

pi 1/pi Ii=log2(1/pi), бит pi*log2(1/pi), бит
Ж 1/2 log2(2)=1 1/2 * 1=1/2
М 1/2 log2(2)=1 1/2 * 1=1/2
å 1 H=1 бит

 

Формула Шеннона (1) совпала по форме с формулой Больцмана, полученной на 70 лет ранее для измерения термодинамической энтропии идеального газа. Эта связь между количеством информации и термодинамической энтропией послужила сначала причиной горячих дискуссий, а затем – ключом к решению ряда научных проблем. В самом общем случае энтропия понимается как мера неупорядоченности, неорганизованности материальных систем.

В соответствии со вторым законом термодинамики закрытые системы, т.е. системы лишенные возможности вещественно-энергетически-информационного обмена с внешней средой, стремятся, и с течением времени неизбежно приходят к естественному устойчивому равновесному внутреннему состоянию, что соответствует состоянию с максимальной энтропией. Закрытая система стремится к однородности своих элементов и к равномерности распределения энергии связей между ними. Т.е. в отсутствии информационного процесса материя самопроизвольно забывает накопленную информацию.








Дата добавления: 2015-10-21; просмотров: 614;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.