Решение. Определим опорные реакции;
Определим опорные реакции;
откуда
Составим проверочное уравнение:
следовательно, реакции определены верно.
Балка имеет два участка I, II (рис. 2.54, а). На участке I при изменении z от 0 до 1 м Q Iy = — Р = — 4 кН постоянна; МxI = Рz = — 4z1 — прямая линия; при z = 0 МxI = 0; при z = 2 м МxI = — 4*2= — 8 кН-м.
Для сечения на участке II при изменении z от 2 до 10 м
Qlyl = — P+VA — q(z — 2) = — 4 + 13 — 2 (z — 2) — прямая линия;
Mx" = Pz + VA (z — 2) — 0,5q (z — 2)2 = — 4z + 13 (z — 2) — (z — 2)2 — парабола.
Найдем на участке II сечение, соответствующее экстремальному значению изгибающего момента: для этого приравняем нулю значение поперечной силы на этом участке:
откуда z0 = 6,5 м.
Подставляя в уравнение для М11х найденное значение z0, получаем:
приz0 = 6,5 м М11х = Мтах = 12,25 кН-м; кроме того, при z = 2 м М11х = 8 кН-м, Qlly = 9 кН; при z = 10 м М11х = 0, Qv = — 7 кН. По этим значениям построены эпюры поперечных сил и изгибающих моментов (рис. 2.54, б, в).
Пример 5. Построить эпюры изгибающих моментов и поперечных сил для балки, изображенной на рис. 2.55, а.
Дата добавления: 2015-09-07; просмотров: 595;