Радиолинии

Что представляет собой радиоволна? Обратимся к проводнику, по которому протекает ток, изменяющийся во времени подобно синусоиде. Вокруг проводника с током создается переменное магнитное поле. Его интенсивность в каждой точке пространства будет меняться по такому же закону синусоиды. Переменное магнитное поле рождает в пустом пространстве переменное электрическое поле (тоже меняющееся в каждой точке пространства по синусоидальному закону). Обнаружить это поле можно с помощью другого проводника: электроны в нем придут в движение, появится переменный синусоидальный ток. В свою очередь меняющееся электрическое поле вновь рождает магнитное поле, а оно – электрическое и т.д. Причем возникающие электрические и магнитные поля, распространяясь, охватывают все новые и новые области пространства. Чем дальше расположена точка пространства от проводника с током, тем позднее достигнут ее колебания полей.

Взаимодействие электрического и магнитного полей не есть нечто обособленное, независимое друг от друга. Оно – проявление единого целого, которое носит название электромагнитного поля.

В физике изменяющееся во времени, т.е. движущееся, пространственное чередование максимумов и минимумов любой физической величины называется волной. Волны мы наблюдаем при бросании камешков в воду. Волну можно пустить по натянутой веревке. Звуковые волны испускает колеблющаяся струна. Распространяющееся в пространстве электромагнитное поле образует электромагнитную волну.

Самые разные по своей природе волны имеют одну и ту же об­щую характеристику – длину волны. Пояснить ее можно на простом и знакомом примере движения волны на поверхности воды. Длина волны – это расстояние между соседними гребнями. Время, за которое один гребень сменяет другой, составляет период колебания волны Т. Если знать скорость с, с какой происходит эта смена, то легко вычислить расстояние между гребнями, т.е. длину волны, как произведение скорости на время: l = сТ. Величина, обратная периоду колебания волны, – это частота колебания f = 1/T. Поэтому l = с/f.

Скорость распространение электромагнитной волны равна ско­рости света с = 300 000 км/с. Следовательно, ток, колеблющийся с частотой, например 300 000 Гц, создает электромагнитную волну длиной 1 км, а с частотой 300 000 000 Гц – 1 м.

В диапазоне радиоволн – ультракоротковолновом – размещаются волны длиной от 10 м до 0,3 мм. Это очень широкий диапазон. Поэтому ультракороткие волны подразделяют на метровые, деци-, санти- и миллиметровые. Первые из них занимают частоты 30...300 МГц, а последние – частоты 30000...1000000 МГц. Для таких сверхвысоких частот (принято сокращение СВЧ) введены специальные обозначения: гигагерцем (ГГц) называют каждую тысячу мегагерц, а терагерцем (ТГц) – каждую тысячу гигагерц. Таким образом, миллиметровым волнам соответствуют частоты 30 ГГц...1 ТГц.

Ультракороткие волны не отражаются от ионосферы и почти не поглощаются ею. Они ведут себя подобно лучам света: пронизывают ионосферу и уходят в космос. В атмосфере Земли существует всего два «окна». Одно из них – в области видимого света. Им человечество пользуется уже тысячи лет, изучая звезды в телескоп. Второе – «радиоокно

» в области УКВ. Оно обнаружено только в XX в. благодаря развитию техники радиосвязи. Именно с помощью этого «окна» осуществляется связь с космическими кораблями.

Из-за «прямолинейного» характера распространения ультракоротких волн связь на них возможна только до тех пор, пока антенна приемника «видит» антенну передатчика. Если на пути волны встречается препятствие (высокий дом, гора, лес), то связь становится невозможной.

Системы вещания – радио- и телевизионного – служат для доставки информации от одного ее источника к большому числу потребителей. В системах же связи информацию нужно доставлять от каждого конкретного источника к каждому конкретному потребителю. Подходят ли для этого радиоволны? Ведь их можно принять в любой точке земного шара.

Вывод один: энергия радиоволн не должна рассеиваться в пространстве, ее нужно сконцентрировать в очень узкий луч. Од­нако хорошо концентрирует энергию только антенны достаточно больших по сравнению с длиной волны размеров. Это напоминает оптику, где размеры зеркал и линз во много раз превышают длину световой волны.


Вот еще одно неоспоримое преимущество ультракоротких волн: для них легко сделать не очень большие и исключительно направленные антенны, которые, условно говоря, фокусируют, «собирают» волну.

Вы обращали внимание, как концентрируется луч света в элект­рическом фонарике? Лампочка помещается в фокусе зеркального отражателя. Подобно этому рупор, излучающий электромагнитную волну, помещают в фокусе параболической антенны (рис. 5.4). Она как рефлектор собирает электромагнитные волны в узкий параллельный пучок лучей и направляет его на приемную антенну. Принимаемые волны в свою очередь «стягиваются» металлическим зеркалом приемной антенны на рупор и через рупор и волновод направляются к приемнику.

Итак, уже не трудно представить себе основные контуры радиолинии, работающей на УКВ. Передатчик – в основе его лежит специальный квантовый генератор, использующий внутреннюю энергию атомов, и вырабатывает СВЧ-колебания, которые по волноводу передаются в антенну. Посылаемый в эфир радиолуч достигает приемной антенны и по волноводному тракту добирается до приемника. А не мало ли это – всего один луч между двумя пунктами? Ведь тот же коаксиальный кабель содержит несколько коаксиальных пар, и по каждой из них можно передавать цифровые потоки с огромными скоростями – сотни мегабит в секунду. Следует заметить, что «пропускная способность» у УКВ-луча во много раз больше, чем у коаксиальной пары. Скорость цифрового потока, как вы помните, зависит от частотного диапазона, в котором работает линия связи. А у радиолинии на УКВ он значительно шире, значит эти волны могут перенести как мощные «тяжеловозы» большее количество бит в одну секунду – свыше тысячи мегабит.

Что же касается увеличения числа лучей, то делают так: несколько передатчиков, генерирующих волны различных длин, заставляют работать на общую антенну. Антенна, таким образом, излучает одновременно несколько лучей с различными длинами волн. В приемной антенне каждая волна отфильтровывается и точно в соответствии со своей длиной поступает в свой приемник. Говорят, что каждый такой луч образует ствол радиолинии. Обычно число стволов не превышает 4–5.


В 1935 г. между Нью-Йорком и Филадельфией вступила в строй радиолиния на ультракоротких волнах. Она имела протяженность 150 км. Чтобы перекрыть это расстояние, через 50 и 100 км были построены две промежуточные «релейные» станции, которые принимали ослабленные радиоволны, «заменяли» их новыми и посылали дальше. Сама радиолиния была названа радиорелейной. Первая радиорелейная линия в нашей стране была построена в 1953 г. между Москвой и Рязанью. Однако еще в начале 30-х годов советские инженеры М.И. Греков и В.М. Большеверов провели опыты по направленной радиосвязи на дециметровых волнах между Москвой и Люберцами.

Современная радиорелейная линия (РРЛ) состоит из двух основных и цепочки промежуточных радиорелейных станций (рис. 5.5). Каждая станция – это приемник, передатчик и высокая мачта (или башня) с антеннами. Для мачт выбирают возвы­шенные участки местности. С каждой из них видны две соседние мачты. Расстояние между промежуточными станциями обычно составляет 40...70 км. Протяженность линии может быть несколько тысяч километров. Радиоволны узким направленным лучом идут от одной станции к другой, принимаются там приемником, усиливаются передатчиком и отправляются к следующей станции.

Разновидностью радиорелейных линий являются спутниковые линии передачи, в которых роль ретранслятора выполняет не наземная промежуточная станция, а спутник связи (точнее, приемо­пе­редающий ретранслятор, помещенный на нем). На зем­ле строятся оконечные станции с параболическими антеннами и устройствами наведения на антенну спутника (рис. 5.6). Спутниковые линии передачи являются широкополосными. Спут­­никовые системы позволяют передавать телевизионные программы в отдаленные районы страны значительно дешевле, чем по наземным радиорелейным или кабельным линиям, а также организовать связь с труднодоступными районами, к которым протягивать наземные линии сложно и дорого, а иногда и просто невозможно.

Кроме описанных существуют и другие радиолинии (например, тропосферные, метеорные и др.).








Дата добавления: 2015-10-21; просмотров: 1433;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.