Методы изучения

Структуру и функции белков изучают как на очищенных препаратах in vitro, так и в их естественном окружении в живом организме, in vivo. Исследования чистых белков в контролируемых условиях полезны для определения их функций: кинетических особенностей каталитической активности ферментов, относительного сродства к различным субстратам и т. п. Исследования белков in vivo в клетках или в целых организмах предоставляют дополнительную информацию о том, где они функционируют и как регулируется их активность.

Методы молекулярной и клеточной биологии обычно применяются для изучения синтеза и локализации белков в клетке. Широко применяется метод изучения локализации, основанный на синтезе в клетке химерного белка, состоящего из исследуемого белка, соединённого с «репортёром», например, зелёным флуоресцентным белком (GFP). Расположение такого белка в клетке можно увидеть с помощью флуоресцентного микроскопа. Кроме того, белки можно визуализировать с помощью распознающих их антител, которые в свою очередь несут флуоресцентную метку. Часто одновременно с изучаемым белком визуализируют известные белки таких органелл, как эндоплазматический ретикулум, аппарат Гольджи, лизосомы и вакуоли, что позводяет более точно определить локализацию изучаемого белка.

Иммуногистохимические методы обычно используют антитела, которые коньюгированы с ферментами, катализирующими реакцию образования люминесцирующего или окрашенного продукта, что позволяет сравнить локализацию и количество изучаемого белка в образцах. Более редкой методикой определения расположения белков является равновесное ультрацентрифугирование клеточных фракций в градиенте сахарозы или хлорида цезия.

Наконец, один из классических методов — это иммуноэлектронная микроскопия, которая принципиально похожа на иммунофлуоресцентную микроскопию с тем отличием, что используется электронный микроскоп. Образец подготавливается для электронной микроскопии, а затем обрабатывается антителами к

Для выполнения анализа in vitro белок должен быть очищен от других клеточных компонентов. Этот процесс обычно начинается с разрушения клеток и получения так называемого клеточного экстракта. Далее методами центрифугирования и ультрацентрифугирования этот экстракт может быть разделён на фракции, содержащие:
растворимые белки;
мембранные липиды и белки;
клеточные органеллы и нуклеиновые кислоты.

Осаждение белков методом высаливания применяется для разделения белковых смесей, а также позволяет сконцентрировать белки. Седиментационный анализ (центрифугирование) позволяет фракционировать белковые смеси по значению константы седиментации отдельных белков, измеряемой в сведбергах (S)[94]. Чтобы выделить необходимый белок или белки на основе таких свойств, как молекулярная масса, заряд и аффинность, затем используются различные виды хроматографии. Кроме того, белки могут быть выделены в соответствии с их зарядом с использованием электрофокусирования.

Чтобы упростить процесс очистки белков, часто используется генетическая инженерия, которая позволяет создать производные белков, удобные для очистки, не затрагивая их структуры или активности. «Метки», представляющие собой небольшие аминокислотные последовательности, например, цепочку из 6 и более остатков гистидина, и прикрепляются к одному из концов белка. Когда экстракт клеток, синтезировавших «меченнный» белок пропускается через хроматографическую колонку, содержащую ионы никеля, гистидин связывается никелем и остается на колонке, в то время как остальные компоненты лизата беспрепятственно проходят сквозь колонку (никель-хелатная хроматография). Множество других меток было разработано, чтобы помочь исследователям выделить специфические белки из сложных смесей чаще всего методом аффинной хроматографии.

Степень очистки белка можно определить, если известны его молекулярная масса и изоэлектрическая точка — с помощью различных видов гель-электрофореза — или измерения ферментативной активности, если белок является ферментом. Масс-спектрометия позволяет идентифицировать выделенный белок по его молекулярной массе и массе его фрагментов.

Совокупность белков клетки называется протеомом, его изучение — протеомикой, названной по аналогии с геномикой. Основные экспериментальные методы протеомики включают:

  • 2D-электрофорез, который позволяет разделять многокомпонентные белковые смеси;
  • масс-спектрометрию, которая позволяет идентифицировать белки по массе составляющих их пептидов с высокой пропускной способностью;
  • белковые микрочипы, которые позволяют одновременно измерять содержание большого количества белков в клетке;
  • дрожжевую двугибридную систему, которая позволяет систематически изучать белок-белковые взаимодействия.

Совокупность всех биологически значимых взаимодействий белков в клетке называется интерактомом. Систематическое исследование структуры белков, представляющих все возможные типы третичных структур, называется структурной геномикой.

 

 








Дата добавления: 2015-10-21; просмотров: 787;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.