Слоистые пластики

Широкое применение в качестве конструкционных и электроизоляционных материалов имеют слоистые пластики — композиции, состоящих из волокнистого листового наполнителя — бумаги, ткани, стеклоткани, пропитанных и склеенных между собой различными полимерными связующими. Слоистые пластики отличаются от других материалов тем, что применяемый наполнитель располагается параллельными слоями. Такая структура обеспечивает высокие механические характеристики, а использование полимерных связующих—достаточно высокое удельное электрическое сопротивление, электрическую прочность и малое значение tgδ.

В зависимости от материала связующего и наполнителя различают несколько типов слоистых пластиков: гетинакс, текстолит, стеклотекстолит.

Наиболее дешевый материала диэлектрических оснований— гетинакс — обладает высокими диэлектрическими свойствами, находит широкое применение в бытовой радиоаппаратуре. Гетинакс получается путем горячей прессовки бумаги, пропитанной бакелитом. Выпускается гетинакс на основе ацетилированной бумаги, обладающей повышенной влагостойкостью и способной заменить стеклотекстолиты. Его недостатком традиционно считается повышенное влагопоглощение (1,5 ... 2,5%) через слои бумаги или из открытых их торцевых срезов, а также сквозь полимерное связующее.

Листовой гетинакс применяется в виде щитов, панелей, изоляционных перегородок в устройствах низкого напряжения. Существует специальная марка гетинакса, предназначенная для работы в маслозаполненной аппаратуре высокого напряжения. Электрическая прочность гетинакса составляет примерно 20-40 кВ/мм. Слоистая структура гетинакса приводит к заметной анизотропии свойств материала. Электрическая прочность вдоль слоев наполнителя в 5-8 раз ниже, чем вдоль слоев.

 

Наименование слоистого пластика Наполнитель Связующее
Гетинакс Пропиточная бумага толщиной 0,1 мм Фенолформальдегидная смола (ФФС)
Текстолит Хлопчатобумажная и синтетическая ткани (саржа, бязь, шифон, бельтинг, лавсан) ФФС
Стеклотекстолит Стеклоткани из бесщелочного алюмоборосиликатного стекла Совмещенная, эпоксидная и ФФС- Совмещенная эпоксикремнийорганическая смола

 

Текстолит обладает более высокой прочностью при сжатии и ударной вязкостью и поэтому используется также в качестве конструкционного материала, и его выпускают не только в виде листов, но и плит толщиной до 50 мм.

Стеклотекстолиты благодаря ценным свойствам наполнителя обладают наиболее высокой механической прочностью, теплостойкостью и минимальным влагопоглощением. Они имеют лучшую стабильность размеров, а электрические свойства остаются высокими и во влажной среде. Вследствие необычной твердости поверхности стеклотекстолиты износоустойчивы.

Выпускается несколько десятков марок стеклотекстолитов, предназначенных для разных целей, в том числе повышенной нагревостойкости, тропикостойкости, гальваностойкости, огнестойкости, с металлической сеткой. Обычные марки фольгированного стеклотекстолита облицованы медной фольгой толщиной 35 ... 50 мкм, для полуаддитивной технологии выпускается теплостойкая модификация с фольгой толщиной 5 мкм. Для той же технологии можно применять листовой нефольгированный стеклотекстолит с адгезионным слоем, обладающим неограниченной жизнестойкостью.

Для изготовления ПП по аддитивной технологии требуются диэлектрики с металлическими включениями, образующими центры кристаллизации при химическом меднении. Для этой цели выпускается слоистый пластик—диэлектрик, содержащий мелкодисперсные частицы металлов—Ag или V.

Качество печатных плат характеризуется следующими свойствами.

1. Прочность является одним из основных свойств, поскольку печатные платы выполняют роль не только диэлектрического основания, но и несущей конструкции. Часто требуется вибропрочность, которой, особенно при больших размерах плат, стеклотекстолит не обладает. Следует иметь в виду, что удельная прочность при толщине, большей, чем 1,5 мм, начинает снижаться, так как затрудняется удаление летучих веществ при отверждении и сказывается градиент температуры, который, как и в случае стекла, проявляется в виде микротрещин на поверхности. Это служит еще одним примером размерного эффекта прочности.

2. Нагревостойкость фольгированных слоистых пластиков определяется по отсутствию вздутий, расслаивания и отклеивания фольги, возникающих при пайке. Критерием является время, в секундах, в течение которого разрушения не наблюдаются при нагреве до 533 К (260 °С). Минимальная нагревостойкость — 5 с, у лучших марок—20 с.

3. Стабильность размеров — изменение длины при смене температур в процессе пайки, когда вся плата перегревается примерно до 393 К (120°С); ТКЛР стеклотекстолита при толщине 1,5 мм составляет 8-10-6 К-1, т. е. отличается от ТКЛР меди более чем в 2 раза, поэтому при больших размерах плат возможен обрыв или отслоение фольги. Кроме того, при Т~370 К в эпоксидных смолах наблюдается фазовый переход, выше которого резко возрастает ТКЛР в направлении толщины слоистого пластика, приводящий к обрыву металлизации отверстий. Нестабильность размеров проявляется также в виде неплоскостности — прогиба, коробления, скручивания, которые возникают вследствие механических напряжений.

4. Электрическая прочность стеклотекстолита анизотропна: в продольном направлении она в несколько раз выше, чем в направлении толщины. Причина этому — анизотропия самого материала и наличие микротрещин, уменьшающих эффективную толщину, но не длину и ширину. С увеличением толщины электри­ческая прочность падает. Так, для плат толщиной 0.5 и 10ммзначение электрической прочности соответственно 30 и 10 кВ/мм.

Недостатки фольгированных стеклотекстолитов являются следствием их неоднородной структуры и особенностей используемых материалов. Это—коробление, нестабильность размеров, растрескивание, отслаивание, воспламеняемость. Наконец, стеклотекстолит из-за высокого tg δ непригоден для СВЧ-техники.

 








Дата добавления: 2015-10-19; просмотров: 2439;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.