Решение общего дифференциального уравнения установившегося потенциального одномерного потока. Показатель формы потока

 

При условии вытеснения флюида из пласта или его нагнетания в пласт через галерею или скважину условимся принимать за координату произвольной точки пласта расстояние r до этой точки от:

1) галереи (для прямолинейно- параллельного потока);

2) центра контура скважины в основной плоскости (плоскости подошвы пласта) фильтрации (для плоско-радиального потока);

3) центра полусферического забоя скважины (для сферически-радиального потока).

В случае одномерного потока пласт представляется своего рода укрупнённой трубкой тока, а из условия неразрывности потока следует, что при установившейся одномерной фильтрации расход массы жидкости в единицу времени (массовый дебит G) через все изобарические (эквипотенциальные) поверхности, определяемые уравнением r=const, в трубке тока будет один и тот же. Т.о.

r u= G /F( r ), 3.2

где F=F( r )- площадь эквипотенциальной поверхности в функции координаты r. Отметим, в данном случае средняя скорость фильтрации на некоторой эквипотенциальной поверхности совпадает со скоростью фильтрации в любой точке этой поверхности.

Определим величину площади F для различных видов одномерных потоков:

прямолинейно-параллельный поток - F( r )=Bh;

плоско-радиальный поток - F( r ) =2p h r;

радиально-сферический поток - F( r ) = 2p r2.

Обратившись к уравнению (2.7) следует отметить, что положительный массовый дебит будет в тех случаях, когда r отсчитывается от стока, т.е. галерея или скважина - эксплуатационная. Приравнивая правые части (2.7) и (3.2), получим общее дифференциальное уравнение трех простейших видов потенциального одномерного потока:

3.3

где Аи jимеют значения:

* прямолинейно-параллельный поток - A=Bh, j=0;

*плоско-радиальный поток - A =2p h, j=1;

* радиально-сферический поток - A = 2p, j=2.

Параметр jполучил название показателя формы потока, т.к. характеризует вид одномерного течения.

Разделив в (3.3) переменные и проинтегрировав, получим

, 3.4

где С - произвольная постоянная, определяемая из граничных условий.

Из формулы (3.4) следует, что она верна при значениях j=0;2. При j=1 (плоско-радиальный поток) интегрирование (3.3) даёт

. 3.5

Найдем единственное решение, соответствующее заданным граничным условиям, т.е. определим постоянную С. Наиболее часто представляются следующие два варианта задачи.

1. Известны: постоянный массовый дебит G и значение потенциала j на одной из граничных поверхностей рассматриваемой области пласта, например, на питающем контуре (пластовое значение потенциала) эксплуатационной галереи или скважины ( G=G0=const, j = j к при r=rк ).

Подставляя данные значения в (3.4) получим

. 3.6

Для замыкания данного уравнения необходимо соотношение для массового дебита

G=G0=const.

2. Известны: значения потенциалов на двух граничных поверхностях пласта, например, на забое скважины и на границе пласта с областью питания (на контуре питания). Т.о. j = j с при r=rc; j = j кприr=Rк . Подставляя в равенство (3.4) один раз значения Rк и j к, а другой раз значенияj с и rc, исключая из двух полученных уравнений постоянную С, найдём массовый дебит G или объёмный дебит Q:

3.7

где значения А и j приведены выше.

Исключая из (3.6) величину G / A, при помощи формулы (3.7) получим

. 3.8

По (3.8) можно определить значение потенциала для любой точки пласта с координатой r, если дебит не известен.

В случае плоско-радиального потока (j=1) соответственно рассмотренным выше двум вариантам задачи и поставленным граничным условиям получим равенства:

3.9

3.10

Т.о., формулы (3.9), (3.10) действительны только для плоско-радиального потенциального потока любой жидкости. Для других видов одномерного движения имеем формулы (3.7), (3.8). Распределение градиента потенциала описывается зависимостью (3.3).

 








Дата добавления: 2015-10-13; просмотров: 1043;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.