Классификация точек покоя
Рассмотрим систему двух линейных дифференциальных уравнений с постоянными коэффициентами
Характеристическое уравнение этой системы имеет вид:
Рассмотрим следующие возможные случаи:
1) Корни характеристического уравнения действительные, отрицательные и различные.
Точка покоя будет устойчива. Такая точка покоя называется устойчивым узлом.
2) Корни характеристического уравнения действительны и
или .
В этом случае точка покоя также будет устойчива.
3) Хотя бы один из корней положителен.
В этом случае точка покоя неустойчива, и такую точку называют неустойчивым седлом.
4) Оба корня характеристического уравнения положительны .
В этом случае точка покоя неустойчива, и такую точку называют неустойчивым узлом.
Если полученного решения системы исключить параметр t, то полученная функция дает траекторию движения в системе координат XOY.
Возможны следующие случаи:
b b
a a
Устойчивый узел. Неустойчивый узел. Седло.
5) Корни характеристического уравнения комплексные .
Если р = 0, т.е. корни чисто мнимые, то точка покоя (0, 0) устойчива по Ляпунову. Такая точка покоя называется центром.
Если p < 0, то точка покоя устойчива и называется устойчивым фокусом.
Если p > 0, то точка покоя неустойчива и называется неустойчивым фокусом.
Дата добавления: 2015-10-13; просмотров: 1016;