Нормальные системы обыкновенных дифференциальных уравнений
Определение. Совокупность соотношений вида:

где х- независимая переменная, у1, у2,…,уn – искомые функции, называется системой дифференциальных уравнений первого порядка.
Определение. Система дифференциальных уравнений первого порядка, разрешенных относительно производных от неизвестных функций называется нормальной системой дифференциальных уравнений.
Такая система имеет вид:
(1)
Для примера можно сказать, что график решения системы двух дифференциальных уравнений представляет собой интегральную кривую в трехмерном пространстве.
Теорема. (Теорема Коши). Если в некоторой области (n-1) –мерного пространства функции
…
непрерывны и имеют непрерывные частные производные по
, то для любой точки
этой области существует единственное решение
системы дифференциальных уравнений вида (1), определенное в некоторой окрестности точки х0 и удовлетворяющее начальным условиям
Определение. Общим решениемсистемы дифференциальных уравнений вида (1) будет совокупность функций
,
, …
, которые при подстановке в систему (1) обращают ее в тождество.
Дата добавления: 2015-10-13; просмотров: 774;
