Использование пилотажного клапана 3 страница
Желательные элементы мокрого гидрокостюма — неопреновые носки или боты. Помимо термоизолирующей функции, они повышают комфортность при плавании в ластах, препятствуя натиранию стопы. Ботики отличаются от носков наличием плотной резиновой подошвы, позволяющей передвигаться в них по суше (при подготовке к погружению или после него), не повреждая неопрен. Если Вы пользуетесь носками, то для хождения по берегу или палубе обувайте поверх тапочки или сандалии — иначе неопреновая подошва выдержит недолго. Наиболее распространенная толщина носков — 3 — 3,5 мм, ботиков — 3, 3,5 и 5 мм. Ботики могут быть с молнией или без нее — первый вариант удобнее и долговечнее.
При температуре воды менее 22 — 24 °С актуальным становится использование неопреновых перчаток; наиболее распространены 3-й 5 — миллиметровые. Для холодной воды пригодны перчатки толщиной 7 мм. Трехпалые модели (рис. 2.21 Б) отличаются наилучшими теплоизолирующими свойствами. Чем толще перчатки, тем сложнее выполнить привычные манипуляции пальцами — поддуть — сдуть компенсатор, поправить сместившуюся маску, удалить попавшие под нее волосы. С другой стороны, замерзшие пальцы теряют чувствительность и подвижность, что гораздо сильнее затрудняет правильное выполнение. Выбор оптимальных перчаток для данных условий погружения — дело весьма ответственное, так как от работоспособности рук во многом зависит ваша безопасность под водой. Если Вам предстоит погружение в холодную воду, а Ваш костюм лишен капюшона, можно использовать отдельно выполненный капюшон (рис. 2.21 Г), заправив его манишку под воротник костюма.
Сухие и полусухие костюмы
Сухие костюмы изолируют тело подводника от воды (фото 2.14). Существуют модели полностью сухие и с открытыми лицом и кистями рук. Первые обеспечивают наилучшую теплоизоляцию, но подразумевают меньшую автономность: для надевания такого костюма, дальнейшей подготовки к погружению и снятия костюма после погружения необходим помощник. Полностью изолирующие костюмы чаще используются профессиональными водолазами, в задачи которых входит длительное пребывание в холодной воде. Для любительских целей, как правило, используются сухие костюмы с открытыми лицом и кистями в сочетании с полу— или полнолицевыми масками и перчатками мокрого типа (фото 2.14 Б). Для лучшей герметизации предусмотрены шейная обтюрация и двойные манжеты на рукавах. Края перчаток при этом заправляются между внутренними и внешними манжетами.
Как же происходит герметизация сухого костюма после его одевания? Широко распространены костюмы с аппендиксом — резиновой трубой, вклеенной в их переднюю часть. Облачение происходит через "аппендикс", после чего он плотно перевязывается резиновым жгутом. Такой способ герметизации хорошо зарекомендовал себя на практике. Отечественная промышленность продолжает выпускать сухие костюмы такого типа. Подавляющее большинство сухих костюмов иностранного производства снабжены герметичными молниями, делающими процесс одевания более простым и быстрым.
Современный дизайн исполнения сухого костюма подразумевает возможность поддува внутреннего объема воздухом из аппарата. Клапан поддува, как правило, располагается на груди и связан быстроразъемным соединением со шлангом среднего давления (см. главу 2.2). Клапан стравливания воздуха чаще всего размещается на левом плече. Сухой костюм такого типа может быть использован для регулировки плавучести наряду с жилетом — компенсатором. Помимо этого, небольшое количество воздуха под костюмом служит дополнительным утеплителем и значительно уменьшает количество воды, затекающее через шейный и запястные манжеты.
Сухие костюмы выполняются из резины или неопрена. Резина может иметь тканевую основу или тканевое покрытие. Такие костюмы весьма прочны, что особенно важно при погружениях в пещерах, затопленных помещениях или просто в мутных озерах с корягами, где велика вероятность повредить костюм. Неопреновые материалы используются те же, что и для изготовления мокрых костюмов.
Под сухой костюм на резиновой основе поддевают дополнительные утеплители: шерстяное белье или специальные поролоновые комбинезоны. Необходимо помнить, что в случае частичной или полной разгерметизации такого костюма вода вытеснит воздух, находящийся в слое утеплителя, и уменьшит тем самым плавучесть подводника. Неопреновые костюмы сами по себе обладают термоизолирующими свойствами и требуют меньшего количества дополнительного утепления. Достаточно часто они, как и мокрые, надеваются на голое тело. В любом случае потеря плавучести при разгерметизации неопренового костюма значительно меньше, чем резинового.
Подобные Неопреновые костюмы, но с манжетами на щиколотках и без клапанов поддува и стравливания часто называютполусухими.
Как выбрать костюм?
Подавляющее большинство подводников—любителей всего мира пользуется костюмами мокрого типа. Они сохраняют неизменную плавучесть в течение всего погружения. Только очень сильное и практически невероятное повреждение костюма (потеря куска материала) может привести к увеличению вашего веса в воде. Мокрый костюм более ремонтопригоден и практичен, нежели сухой, незначительные повреждения материала мало влияют на теплозащитные свойства. Плавание в сухом костюме требует большего профессионализма, так как перемещающиеся в подкостюмном пространстве пузыри воздуха меняют вашу остойчивость, что требует дополнительного внимания. Напомним, что неумелое обращение с сухим костюмом может привести к баротравме уха (глава 3.1). Пожалуй, единственное преимущество сухого гидрокостюма — лучшие теплоизолирующие свойства. Если у Вас мало опыта плавания с аквалангом — начинайте с "мокрого" варианта. Раздельный гидрокостюм из неопрена толщиной 7 мм вполне пригоден для погружения продолжительностью 30—40 мин в воде с температурой 5—10 °С. Своего рода компромиссом между простотой в использовании и эффективностью теплоизоляции представляются костюмы полусухого типа. Сухие же, как правило, используются опытными аквалангистами при длительном пребывании в холодной воде. Добавим, что. сухие костюмы значительно дороже мокрых аналогичного качества.
Выбор конкретной модели мокрого или сухого костюма зависит от ваших целей. Возможные варианты описаны выше.
Как правило, костюмы имеют несколько стандартных размеров, маркированных цифрами от 1 до 6. Выбор размера гидрокостюма — дело более сложное, чем подбор сухопутной одежды. Особенно это касается мокрых костюмов, которые должны плотно облегать тело. Если мокрый костюм великоват (рис 2.21 В), возрастает интенсивность обмена "подкостюмной" и внешней воды, т.е. значительно снизится эффективность теплоизоляции. Если костюм мал — это доставит Вам массу мучений с одеванием и раздеванием, а кроме того, ускорит износ самого костюма. Обязательно примеряйте его перед тем, как сделать выбор, и, если ваш опыт еще не достаточно велик — проконсультируйтесь у специалиста. Наилучший вариант — изготовление костюма на заказ по снятым с Вас меркам, но, к сожалению, не все изготовители оказывают эту услугу.
Уход за костюмом
Рекомендуем выполнять следующие требования по уходу за костюмами:
1. Промывать пресной водой после эксплуатации в соленой воде. При ежедневном использовании в соленой воде можно обходиться без опреснения, но тогда не следует допускать полного высыхания костюма между погружениями, так как именно образующиеся кристаллы соли разрушают резину.
2. Промывать костюм чистой водой после погружения в загрязненной воде.
3. Не сушить его под прямыми солнечными лучами или вблизи от нагревательных приборов.
4. Не допускать сильных перегибов и постоянных складок или растяжений при хранении и транспортировке.
5. Если Вы пользуетесь сухим костюмом, то старайтесь перед каждым погружением смазывать гермомолнию силиконовой смазкой, а клапаны поддува и стравливания воздуха особенно тщательно промывать чистой пресной водой, перед тем как убирать костюм на длительное хранение.
При правильной эксплуатации костюм хорошего качества может служить более десяти лет и быть пригодным для совершения более 500 погружений.
Для ремонта резиновых костюмов годятся любые типы резиновых водостойких клеев; для ремонта неопреновых предпочтительны специальные клеи, выпускаемые фирмами — производителями подводного снаряжения.
Глава 2.10. Средства информации
Степень разнообразия средств для снабжения подводника информацией вполне соответствует современному уровню развития информационных систем. Что же представляется необходимым и достаточным для целей аквалангиста—любителя? Методика погружений, рекомендуемая всеми международными федерациями, предполагает пребывание под водой группы подводников, т.е. как минимум двух человек. Каждый из них обязательно должен располагать индивидуальным средством, информирующим о запасе воздуха в баллонах. Таковым может служить механизм, разделяющий запас воздуха на основной и резервный, или, что более удобно, выносной манометр высокого давления. Для безопасного погружения необходимо располагать информацией о глубине, времени погружения, продолжительности бездекомпрессионного предела или режиме декомпрессии. Полезно иметь индивидуальные источники этой информации; если нет — ими должен располагать хотя бы руководитель погружения. Компас, строго говоря, не является обязательным элементом индивидуального или группового снаряжения, но крайне желателен, хотя бы для руководителя. Приборы, поставляющие информацию, могут быть как аналоговыми, так и цифровыми, как наручными, так и встроенными в единую консоль (фото 2.15).
Размещение приборов
Обязательный элемент снаряжения — прибор, снабжающий информацией о давлении воздуха в баллонах. Традиционно для этого используется выносной манометр высокого давления, связанный с аквалангом через шланг. Как правило, шланг манометра пропускается под левой рукой и крепится специальным карабином к кольцу на жилете — компенсаторе или к плечевому ремню акваланга. Остальные приборы можно надеть на запястье левой или правой руки, либо интегрировать в единую консоль, т.е. в общем корпусе с выносным манометром. В этом случае рассеивание внимания минимально и отпадает надобность застегивать несколько ремешков на запястье. Консоли как правило, свободно вращаются на шланге вокруг своей продольной оси. Они могут быть прямыми или немного повернутыми относительно оси шланга, рассчитанными на два или три прибора. В консолях с тремя элементами, последние могут располагаться с одной стороны или с двух (вариант 2+1). Тогда консоль может иметь подвижное соединение посредине, позволяющее поворачивать краевой сегмент вокруг продольной оси (фото 2.15 В), попарно совмещая разные приборы.
В современном снаряжении все больше функций берет на себя электроника. Весьма распространены консоли, сочетающие аналоговые и цифровые приборы. Современный уровень развития подводных компьютеров позволил отказаться и от шланга высокого давления, соединяющего манометр с аквалангом, о чем подробнее рассказывается ниже.
Наручное расположение приборов тоже имеет свои преимущества. Во-первых, для снятия показаний не нужно брать в руки консоль, что экономит время. Это особенно актуально, если руки заняты другими предметами (фото — и видеотехника, инструменты, фонарь, питомза и др.). Во-вторых, расположенные на руке приборы меньше подвержены случайным ударам, например, при выходе на плавсредство в условиях качки. Словом, выбор консольного и/или наручного варианта исполнения приборов — до известной степени дело вкуса.
Аналоговый манометр высокого давления
Для контроля давления воздуха в баллонах во время погружения предназначенывыносные манометры. Прибор состоит из корпуса и гибкого шланга высокого давления длиной около 80 см. Согласно международному стандарту свободный конец шланга имеет наружную резьбу диаметром 7/16" для подсоединения к порту высокого давления редуктора акваланга. Таким образом, высокое давление передается в корпус манометра, где через мембранный механизм отклоняет стрелку прибора. Шкала манометра равномерно отградуирована от 0 до 200 или 300 атм. В большинстве современных манометров сектор от 0 до 50 атм выделен красным цветом (фото 2.15 Б, Г). Иногда им отмечен сектор до 70 атм., встречается более сложная цветовая разметка. Вращающееся соединение гибкого шланга и корпуса манометра обеспечивает удобство пользования.
Возможны и другие варианты подключения и общей компоновки выносного манометра. Так, например, в отечественном аппарате "Подводник—2" манометр подсоединяется непосредственно к трубке высокого давления баллонного блока и все время находится под давлением. Циферблат прибора расположен перпендикулярно оси шланга высокого давления, что не прибавляет удобства при снятии показаний.
Практически все современные манометры международного стандарта имеют мягкий резиновый корпус, оберегающий как сам прибор от ударов о другие предметы, так и другие предметы, например — маску, от ударов о манометр. Сегодня наиболее распространено использование выносных манометров (или более сложных приборов) и отказ от системы резервной подачи воздуха.
Для измерения запаса воздуха в баллонах на суше предназначены проверочные манометры (фото 2.15 К). Пользоваться ими проще и удобнее, чем прикреплять к баллонам громоздкий регулятор с выносным манометром. Проверочный манометр состоит из узла крепления к баллонному блоку, короткого патрубка и корпуса с градуированным циферблатом и стрелкой. На патрубке обязательно должен быть расположен вентиль, предназначенный для стравливания высокого давления из внутреннего объема манометра. Порядок измерения давления в акваланге следующий:
1. Манометр присоединяется к выходу высокого давления баллонного блока. Стравливающий вентиль манометра должен быть закрыт.
2. Плавно открывается вентиль основной подачи воздуха (до конца и на четверть оборота обратно).
3. После снятия показаний прибора вентиль подачи воздуха из баллонов закрывается.
4. Открывается стравливающий вентиль манометра.
5. После выравнивания давления внутри манометра с атмосферным прибор отсоединяется.
Аналоговый глубиномер
Наиболее простой подводный прибор — капиллярный глубиномер. Принцип его действия несложен: по периметру дисковидного корпуса расположена прозрачная трубка, герметично запаянная с одной стороны и сообщающаяся с окружающей средой небольшим отверстием — с другой. При погружении в трубке остается воздух, сжимаемый поступающей через отверстие водой. Степень сжатия воздуха пропорциональна глубине, а граница воздуха с водой показывает глубину погружения на специально размеченной шкале, нанесенной на корпусе глубиномера. Она нелинейная — это с очевидностью следует из закона Бойля — Мариотта (глава 1.1).
Неудобство капиллярного глубиномера — сложность снятия показаний, особенно в условиях плохой видимости или темноте. Подавляющее большинство современных глубиномеров снабжены мембранным механизмом: мембрана разделяет два объема: внутреннюю камеру глубиномера, заполненную воздухом, имеющим на поверхности давление 1 атм. и окружающую среду. Когда давление снаружи увеличивается, мембрана прогибается и толкает шток; его движение передает на стрелку прибора зубчатый механизм. Круглый циферблат прибора имеет шкалу, размеченную от 0 до 50, 100 или более метров, линейную или нелинейную. Последний вариант повышает точность снятия показаний на небольших глубинах и уменьшает — на больших. Это сделано ради удобства выдерживания уровня остановки безопасности или декомпрессионной остановки, которые приходятся на небольшие глубины.
Шкалы аналоговых глубиномеров откалиброваны для пресной воды. За счет разницы в плотности давление на одной и той же глубине в соленой воде выше, нежели в пресной. Это значит, что все аналоговые глубиномеры в морской воде показывают глубину, несколько большую реальной. Ошибка не велика — в воде океанской солености она составляет примерно 35 см на каждые 10 метров глубины.
Подавляющее большинство современных глубиномеров имеют дополнительную стрелку, расположенную на одной оси с основной. Основная стрелка зацепляет дополнительную при движении "вверх" по шкале, т.е. с ростом глубины, и не меняет ее положения, когда идет вниз. Таким образом, глубиномер не только показывает текущую глубину, но и отмечает максимальную. Возврат дополнительной стрелки в исходное положение производится вручную поворотом головки на верхней поверхности глубиномера.
Компас
Для использования под водой пригоден любой компас, корпус которого заполнен жидкостью. Поскольку жидкости практически несжимаемы, такие компасы можно использовать на любой, доступной для подводника глубине. Простейший вариант — обычный туристический жидкостный компас. Специализированные подводные компасы (фото 2.15 Б—Г), как правило, вместо стрелки имеют подвижную картушку с разметкой сторон света и градуировкой. Подвижный внешний лимб с курсоуказателем или визирной линией облегчает задачу следования по заданному курсу. Компасы классической дисковидной формы должны быть при ориентировании расположены горизонтально — иначе стрелка или картушка будет задевать за корпус прибора и давать неточные показания, а то и полностью заклинит. Некоторым преимуществом в этом плане обладают сферические или полусферические компасы, имеющие больший допустимый угол наклона. Ваш акваланг, если он не антимагнитный (алюминиевый) , будет вызывать небольшую погрешность показания прибора. Эта погрешность зависит от взаимного расположения компаса и баллона, но не зависит от курса вашего следования.
Для подводных целей выпускаются и цифровые компасы. Пока они не стали достаточно популярными среди подводников — любителей и чаще используются профессионалами для поисковых работ. Цифровой компас имеет кольцевой индикатор с высвечивающимися обозначениями сторон света и курсоуказатель, под которым высвечивается его направление в градусах. Существуют и цифровые навигационные приборы с гораздо большим числом функций, но их обзор выходит за рамки настоящей книги.
Часы
Выпускаемые для подводников часы (фото 2.15 А) имеют герметичный корпус, выдерживающий высокое давление. Большинство качественных подводных часов рассчитаны на глубины до 200 м. Механические или кварцевые часы снабжены герметично закручивающейся головкой. Для завода пружинного механизма или перевода стрелок надо открутить ее, произвести необходимые действия, как с обычными часами, и закрутить головку. Подвижный лимб вокруг циферблата снабжен делениями, позволяющими легко засекать время погружения. Деления циферблата и стрелки покрыты люминофором, позволяющим пользоваться часами в темноте. Электронные часы для подводного плавания могут иметь дополнительные функции, например, быть оснащенными цифровым компасом в виде кольцевого индикатора, на котором высвечиваются четыре риски, направленные на север, юг, запад и восток. В верхней части индикатора располагается курсоуказатель, сориентировав его в нужную сторону, Вы можете прочитать его направление в градусах. Часы могут быть снабжены глубиномером, альтиметром (высотомером), термометром, запоминать основные показатели нескольких последних погружений, т.е. выполнять некоторые функции цифровых приборов подводника.
Цифровые приборы подводника
В последнее время весьма популярными стали цифровые приборы, одновременно выполняющие функции глубиномера, таймера и некоторые другие. К сожалению, в русском языке нет общепринятого термина для этих инструментов. Мы будем называть их —цифровыми приборами подводника. Строго говоря, под это определение подходят и электронные часы, и цифровые компасы, и компьютеры. Но, для удобства, ограничим значение термина приборами, обладающими вышеуказанными функциями, но не рассчитывающими времени бездекомпрессионного погружения и режима декомпрессии.
Цифровой прибор, размером с обычный аналоговый глубиномер (фото 2.15 Г, Д), выполняет несколько функций:
· указание текущей глубины;
· указание максимальной достигнутой глубины текущего погружения;
· отсчет времени погружения: начальным моментом считается погружение прибора на глубину 1—1,3 м (для разных моделей) — примерно на ней располагается консоль, когда подводник находится на поверхности;
· индикация температуры окружающей среды;
· предупреждение о превышении допустимой скорости всплытия (12 м/мин), возможно, с указанием величины превышения в процентах от рекомендуемой скорости (10 м/мин);
· поверхностный интервал (время, прошедшее после предыдущего погружения);
· запись времени и максимальной глубины нескольких последних погружений (от 4 до 9 для большинства современных моделей). Цифровые приборы могут обладать дополнительными возможностями:
· звуковой сигнал, предупреждающий о превышении допустимой скорости всплытия;
· индикатор предупреждения о скором окончании ресурса источника питания;
· подсчет общего числа погружений, совершенных с данным прибором;
· подсчет общего времени, проведенного под водой с данным прибором;
· запоминание максимальной глубины, зафиксированной данным прибором.
Информация выводится на жидкокристаллический экран в виде цифр и мнемонических символов. Прибор активизируется автоматически при попадании в воду. Можно включить его и на суше, соединив увлажненными пальцами два из трех контактов, на его передней панели. Соединяя попарно определенные контакты (согласно руководству по эксплуатации конкретной модели), можно переводить прибор в один из трех режимов — поверхностный, готовности к погружению и архива.
Большинство современных цифровых приборов работает на литиевых батарейках. Ресурс питания, как правило, рассчитан на определенное число погружений в течение нескольких лет: например 250 погружений за 5 лет, 1000 погружений за 10 лет. Смену элементов питания необходимо производить в официальных центрах технического обслуживания.
Компьютеры
Описанные выше приборы предоставляют подводнику информацию, необходимую для дальнейших вычислений бездекомпрессионного предела или режима декомпрессии с использованием декомпрессионных таблиц. Так же необходимо контролировать показания выносного манометра и производить приблизительный расчет оставшегося времени по воздуху. Если Вам предстоит подъем с декомпрессионными остановками, последняя задача становится достаточно сложной. Эту работу или ее часть может взять на себя подводный компьютер, не связанный или связанный с аквалангом.
Компьютеры, не связанные с аквалангом
Компьютеры внешне похожи на цифровые приборы, могут быть округлой или прямоугольной формы, наручными или интегрированными в приборную консоль (фото 2.15 Е, Ж). Подобно цифровым приборам, в процессе погружения компьютеры выводят на экран время погружения, текущую и максимально достигнутую глубину. Помимо этого, компьютер рассчитывает изменения концентрации азота в тканях подводника на суше и под водой, исходя из математической модели насыщения и рассыщения организма азотом. Алгоритмы этих вычислений постоянно совершенствуются и учитывают все большее количество факторов. Современные алгоритмы учитывают разницу скоростей насыщения и рассыщения разных тканей. Так, например, время выхода избыточного азота из крови и костной ткани может различаться более, чем на порядок. Для удобства расчетов, ткани человеческого организма подразделяются на несколько групп. Алгоритм профессора Бульмана оперирует 8 типами тканей, объединенными в 4 группы:
1. Почки, печень, центральная нервная система.
2. Ткани кожных покровов и сердечно—сосудистой системы.
3. Мышечные ткани.
4. Жировые и костные ткани.
Алгоритм профессора Хана оперирует 9 типами тканей, есть и другие модели. Современные алгоритмы учитывают также изменения поверхностного давления в зависимости от высоты над уровнем моря (для высокогорных погружений), температуру окружающей среды, а кроме того, имеют некоторый запас безопасности. Правда, они рассчитаны на человека со средним весом (70 — 75 кг). Подводникам, имеющим больший вес, рекомендуется делать некоторую поправку показаний прибора в сторону уменьшения бездекомпрессионного предела и увеличения времени декомпрессии.
Безусловное преимущество компьютеров перед декомпрессионными таблицами — расчет концентрации азота исходя из реального профиля погружения, а не из прямоугольного, который мы получаем в результате округления. В подавляющем большинстве случаев это позволяет увеличить время бездекомпрессионного погружения.
Так же как и цифровые приборы, компьютеры имеют несколько режимов работы. В том числе обязательные: самодиагностики, поверхностный, подводный и режим архива. Многие современные модели могут работать также в режиме планирования погружения.
Итак, Вы приобрели компьютер и совершаете с ним первое погружение. Согласно декомпрессионным таблицам, процесс рассыщения (выведения азота из организма) после предыдущего погружения завершен. В противном случае надо дождаться полного окончания рассыщения, так как, иначе, показания компьютера не будут соответствовать действительности. Компьютер включится автоматически в режим погружения при входе в воду, но лучше включить его непосредственно перед этим — ведь несколько секунд уходит на самодиагностику, и, если Вы начали погружение до ее окончания, показания компьютера будут отличаться от реальных величин. Ручное включение компьютера, как и цифрового прибора, осуществляется путем замыкания контактов увлажненными пальцами. На экранах разных компьютеров выводимая информация размещается различным образом. Почти во всех моделях наиболее крупным шрифтом выделена текущая глубина. Обязательно идет отсчет времени погружения и индикация максимальной глубины. До тех пор, пока Вы не перейдете через бездекомпрессионный предел, на экран выводится оставшееся до него время. В момент перехода через этот рубеж оно заменяется информацией по режиму декомпрессии, и появляется мнемонический символ, указывающий на ее необходимость. В некоторых компьютерах сведения по декомпрессии ограничены общим ее временем и глубиной первой остановки. В таком случае необходимо оставаться на этой глубине до тех пор пока не произойдет замена ее величины или она не исчезнет. Более полный вариант включает информацию по времени первой остановки. После подъема на поверхность компьютер переключается с подводного режима на поверхностный. В поверхностном режиме компьютер производит обратный отсчет времени, оставшегося до полного рассыщения организма азотом. Если Вы приступаете к повторному погружению до истечения этого срока, компьютер учитывает оставшуюся избыточную концентрацию азота, тем самым уменьшая время бездекомпрессионного предела.
Компьютер — предмет индивидуального пользования, и передавать его другому подводнику не рекомендуется. При крайней необходимости это можно делать лишь при соблюдении двух условий:
1. Рассыщение азотом организма нового пользователя полностью окончено.
2. Рассыщение прежнего пользователя согласно показаниям компьютера завершено.
При несоблюдении первого условия может развиться декомпрессионная болезнь. При несоблюдении второго — уменьшается время бездекомпрессионного предела, рекомендуемого компьютером, а соблазн "прикинуть в уме" может привести к серьезным ошибкам и еще более серьезным последствиям.
Режим архива позволяет запомнить информацию о нескольких последних погружениях и вывести ее на экран. При этом высвечивается номер погружения в обратном отсчете (№ 1 присваивается последнему погружению) и, как минимум, максимальная глубина и время погружения. Наиболее совершенные модели запоминают профили нескольких последних погружений и могут переводить их в обычный персональный компьютер. Специальные программы позволяют затем детально анализировать прошедшее погружение за "сухопутным" компьютером.
Режим планирования позволяет перед предстоящим погружением получить информацию о бездекомпрессионном пределе для интересующей Вас глубины и режиме декомпрессии для заданного профиля погружения. Естественно, при этом учитывается влияние предыдущих погружений.
Компьютеры, связанные с аквалангом
Компьютеры этого типа обязательно рассчитывают режим декомпрессии и могут выполнять все функции, описанные выше. В дополнение к этому они располагают информацией о давлении воздуха в баллонах. Передача этой информации осуществляется одним из двух способов:
1. Компьютер соединяется с редуктором акваланга шлангом высокого давления и располагается подобно выносному манометру. Такой способ передачи информации наиболее надежен, и именно им предпочитают пользоваться профессиональные водолазы. Объединение компьютера с компасом образует универсальную приборную консоль (фото 2.15 3).
2. Компьютер подключен к аквалангу с помощью радиосвязи:
блок с радиопередатчиком вкручивается в порт высокого давления редуктора, а приемник находится в корпусе компьютера. Радиопередатчик снабжен независимым источником питания (как правило, литиевой батарейкой). Преимуществом такой конструкции является отсутствие шланга соединяющего акваланг и компьютер и возможность размещения последнего на запястье. Общее правило, что приборы, размещенные на руке, меньше подвержены ударам — верно и для компьютеров. Недостаток подобной модели заключается в возможных помехах для радиосвязи при нахождении вблизи крупных магнитных объектов (железные подводные конструкции или затонувшие суда).
Как правило, индикатор давления воздуха (в атмосферах), размещен на выделенной тем или иным образом части экрана. Наиболее совершенные модели компьютеров производят следующий расчет:
Дата добавления: 2015-10-13; просмотров: 1058;