Векторное произведение векторов
Определение 1. Векторным произведением геометрических векторов и называется вектор , такой что: а) ; б) , ; в) векторы , , образуют правую тройку векторов.
Для векторного произведения могут быть использованы следующие обозначения: .
Справедливы следующие свойства векторного произведения:
1) ; 2) ;
3) ; 4) .
Свойства 1), 3) и 4) прямо следуют из определения векторного произведения. Свойство 2) мы принимаем без доказательства.
Еще раз подчеркнем, что результатом векторного произведения векторов является вектор, по длине равный площади параллелограмма, построенного на векторах и . Поэтому с помощью векторного произведения можно находить площади параллелограммов и треугольников. Кроме того, векторное произведение равно нулю тогда и только тогда, когда векторы параллельны одной прямой, что позволяет проверять коллинеарность заданных векторов.
3. Вычислениевекторного произведения в ДСК
Теорема 2. В декартовой системе координат векторное произведение геометрических пространственных векторов и равно вектору .
Доказательство. Рассмотрим векторное произведение векторов и , заданных в декартовой системе координат . Используя свойства 2), 3) векторного произведения векторов, запишем следующие преобразования:
.
Для получения заключительного результата заметим, что в силу свойства 4 векторные произведения равных векторов равны нулевому вектору, т. е. , , . Кроме того, из правой ориентации базисных векторов следует, что , , , , , . Продолжая вычисления, получим, что . Теорема доказана.
Полученный результат можно записать в виде . Здесь определитель мы понимаем, как формальное разложение по своей первой строке. Иными словами, данную формулу можно описать следующим образом. В декартовой системе координат векторное произведение геометрических пространственных векторов и равно вектору, порождаемому определителем, у которого первая строка состоит из базисных векторов ; вторая строка состоит из координат вектора ; третья строка состоит из координат вектора .
Дата добавления: 2015-10-09; просмотров: 996;