Представление изображений.
Все известные форматы представления изображений (как неподвижных, так и движущихся) можно разделить на растровые и векторные. В векторном формате изображение разделяется на примитивы - прямые линии, многоугольники, окружности и сегменты окружностей, параметрические кривые, залитые определенным цветом или шаблоном, связные области, набранные определенным шрифтом отрывки текста и т. д. (см. рис.). Для пересекающихся примитивов задается порядок, в котором один из них перекрывает другой. Некоторые форматы, например, PostScript, позволяют задавать собственные примитивы, аналогично тому, как в языках программирования можно описывать подпрограммы. Такие форматы часто имеют переменные и условные операторы и представляют собой полнофункциональный (хотя и специализированный) язык программирования.
Рис. Двухмерное векторное изображение
Каждый примитив описывается своими геометрическими координатами. Точность описания в разных форматах различна, нередко используются числа с плавающей точкой двойной точности или с фиксированной точкой и точностью до 16-го двоичного знака.
Координаты примитивов бывают как двух-, так и трехмерными. Для трехмерных изображений, естественно, набор примитивов расширяется, в него включаются и различные поверхности - сферы, эллипсоиды и их сегменты, параметрические многообразия и др. (см. рис.).
Рис. Трехмерное векторное изображение
Двухмерные векторные форматы очень хороши для-представления чертежей, диаграмм, шрифтов (или, если угодно, отдельных букв шрифта) и отформатированных текстов. Такие изображения удобно редактировать - изображения и их отдельные элементы легко поддаются масштабированию и другим преобразованиям. Примеры двухмерных векторных форматов - PostScript, PDF (Portable Document Format, специализированное подмножество PostScript), WMF (Windows MetaFile), PCL (Printer Control Language, система команд принтеров, поддерживаемая большинством современных лазерных и струйных печатающих устройств). Примером векторного представления движущихся изображений является MacroMedia Flash. Трехмерные векторные форматы широко используются в системах автоматизированного проектирования и для генерации фотореалистичных изображений методами трассировки лучей и т. д.
Однако преобразование реальной сцены (например, полученной оцифровкой видеоизображения или сканированием фотографии) в векторный формат представляет собой сложную и, в общем случае, неразрешимую задачу. Программы-векторизаторы существуют, но потребляют очень много ресурсов, а качество изображения во многих случаях получается низким. Самое же главное - создание фотореалистичных (фотографических или имитирующих фотографию) изображений в векторном формате, хотя теоретически и, возможно, на практике требует большого числа очень сложных примитивов. Гораздо более практичным для этих целей оказался другой подход к оцифровке изображений, который использует большинство современных устройств визуализации: растровые дисплеи и многие печатающие устройства.
В растровом формате изображение разбивается на прямоугольную матрицу элементов, называемых пикселами (слегка искаженное PICture ELement - этемент картинки). Матрица называется растром. Для каждого пиксела определяется его яркость и, если изображение цветное, цвет – можно эти параметры выразить с помощью целых чисел, то есть растровое кодирование позволяет использовать двоичный код для преставления графических данных. Если, как это часто бывает при оцифровке реальных сцен или преобразовании в растровый формат (растеризации) векторных изображений, в один пиксел попали несколько элементов, их яркость и цвет усредняются с учетом занимаемой площади. При оцифровке усреднение выполняется аналоговыми контурами аналого-цифрового преобразователя, при растеризации - алгоритмами анти-алиасинга.
Размер матрицы называется разрешением растрового изображения. Для печатающих устройств (и при растеризации изображений, предназначенных для таких устройств) обычно задается неполный размер матрицы, соответствующей всему печатному листу, а количество пикселов, приходящихся на вертикальный или горизонтальный отрезок длиной 1 дюйм; соответствующая единица так и называется - точки на дюйм (DPI, Dots Per Inch).
Для черно-белой печати обычно достаточно 300 или 600 DPI. Однако принтеры, в отличие от растровых терминалов, не умеют манипулировать яркостью отдельной точки, поэтому изменения яркости приходится имитировать, разбивая изображение на квадратные участки и регулируя яркость относительным количеством черных и белых (или цветных и белых при цветной печати) точек в этом участке. Для получения таким способом приемлемого качества фотореалистичных изображений 300 DPI заведомо недостаточно, и даже бытовым принтерам приходится использовать гораздо более высокие разрешения, вплоть до 2400 DPI.
Вторым параметром растрового изображения является разрядность одного пиксела, которую называют цветовой глубиной. Для черно-белых изображений достаточно одного бита на пиксел, для градаций яркости серого или цветовых составляющих изображения необходимо несколько битов (см. рис.). В цветных изображениях пиксел разбивается на три или четыре составляющие, соответствующие разным цветам спектра. В промежуточных данных, используемых при оцифровке и редактировании растровых изображений, цветовая глубина достигает 48 или 64 бит (16 бит на цветовую составляющую). Яркостный диапазон современных Мониторов, впрочем, позволяет ограничиться 8-ю битами, т. е. 256 градациями, на одну цветовую составляющую: большее количество градаций просто незаметно глазу. На кодирование цвета одной точки надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн различных цветов, что близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных разрядов называют полноцветным (True Color).
Рис. Растровое изображение
Наиболее широко используемые цветовые модели - это RGB (Red, Green, Blue - красный, зеленый, синий, соответствующие максимумам частотной характеристики светочувствительных пигментов человеческого глаза), CMY (Cyan, Magenta, Yellow - голубой, пурпурный, желтый, дополнительные к RGB) и CMYG - те же цвета, но с добавлением градаций серого. Цветовая модель RGB используется в цветных кинескопах и видеоадаптерах, CMYG - в цветной полиграфии.
В различных графических форматах используется разный способ хранения пикселов. Два основных подхода - хранить числа, соответствующие пикселам, одно за другим, или разбивать изображение на битовые плоскости - сначала хранятся младшие биты всех пикселов, потом - вторые и так далее.
Обычно растровое изображение снабжается заголовком, в котором указано его разрешение, глубина пиксела и, нередко, используемая цветовая модель.
Дата добавления: 2015-10-09; просмотров: 759;