Пример 3. 1. Выражения х&Ø(у®z); |(x, y, z Ú u) являются формулами алгебры логики, поскольку удовлетворяют данному выше определению.
1. Выражения х&Ø(у®z); |(x, y, z Ú u) являются формулами алгебры логики, поскольку удовлетворяют данному выше определению.
2. Выражение ®х &(у | z)не является формулой алгебры логики, поскольку неправильно применена операция ®.
Определение. Функцией, реализуемой формулой F, называется функция, получаемая при подстановке значений переменных в F . Обозначим ее f(F).
Пример 4. Рассмотрим формулу F = ху Å(х®z). Для того, чтобы построить таблицу истинности реализуемой функции, необходимо последовательно с учетом силы логических связок выполнить логическое умножение ху, затем импликацию (х®z), после чего сложить полученные значения истинности по модулю 2. Результат выполнения действий показан в таблице:
x | y | z | xy | х® z | F |
Формульное представление функций позволяет априори оценивать многие свойства функций. Переход от формульного задания к таблице истинности всегда может быть выполнен путем последовательных подстановок значений истинности в элементарные функции, входящие в формулу. Обратный переход неоднозначен, поскольку одна и та же функция может быть представлена различными формулами. Он требует отдельного рассмотрения.
Дата добавления: 2015-10-05; просмотров: 721;