Линейное (векторное) пространство

Раздел 2. Квадратичные формы и линейные операторы

 

Линейные операторы

Линейное (векторное) пространство

 

Пусть - множество элементов, для которых определены операции сложения и умножения на число, причём эти операции обладают следующими свойствами.

Для любых элементов , , из множества

1) (коммутативность сложения);

2) (ассоциативность сложения);

3) во множестве существует нулевой элемент такой, что для любого элемента , (существование нулевого элемента);

4) для любого элемента существует элемент , такой, что (существование противоположного элемента);

5) .

Для любых действительных чисел любых элементов , из множества ;

6) ;

7) Распределительный закон ;

8) .

Определение. Множество называется линейным (векторным) пространством, а его элементы называются векторами.

Примерами векторных пространств являются множество действительных чисел, множество векторов на плоскости и в пространстве, матрицы и т.д.

Если операции сложения и умножения на число определены для действительных элементов, то линейное (векторное) пространство является вещественным пространством, если для комплексных элементов – комплексным пространством.

 








Дата добавления: 2015-09-29; просмотров: 426;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.