Цилиндр
Цилиндрической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной кривой параллельно данной прямой (рис. 12.25).
Данная кривая называется направляющей, а прямые – образующими цилиндрической поверхности.
Прямой круговой цилиндрической поверхностью называется поверхность, образованная всеми прямыми, проходящими через каждую точку данной окружности перпендикулярно плоскости этой окружности. В дальнейшем эту поверхность будем кратко называть цилиндрической (рис. 12.26).
Цилиндром (прямым круговым цилиндром) называется геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые перпендикулярны образующим поверхности (рис. 12.27).
Рис. 12.25 Рис. 12.26 Рис. 12.27
Цилиндр можно рассматривать как тело, полученное при вращении прямоугольника вокруг оси, содержащей одну из сторон прямоугольника.
Два круга, ограничивающие цилиндр, называются его основаниями. Прямая, проходящая через центры данных кругов, называется осью цилиндра. Отрезки, образующие цилиндрическую поверхность, называются образующими цилиндра. Высотой цилиндра называется расстояние между его основаниями. Осевым сечением называется сечение, проходящее через ось цилиндра. Разверткой боковой поверхности цилиндра называется прямоугольник со сторонами, равными длине окружности основания и длине образующей цилиндра.
Для цилиндра верны формулы:
(12.5)
(12.6)
где Sосн – площадь основания; R – радиус основания; Sбок – площадь боковой поверхности; H – высота; Sполн – площадь полной поверхности; V – объем цилиндра.
Пример 1. Найти радиус основания цилиндра, если его высота равна 8 см, а диагональ осевого сечения составляет угол 45º с плоскостью основания.
Решение. Сделаем рисунок (рис. 12.28).
Рис. 12.28
Осевое сечение цилиндра – это прямоугольник, одна сторона которого – образующая (высота) цилиндра, вторая сторона – диаметр основания цилиндра. Рассмотрим треугольник АВС, у которого катетами являются диаметр основания АС и высота ВС, а гипотенузой – диагональ сечения АВ. Так как то – равнобедренный и АС = ВС = 8 см. АС – диаметр, значит, радиус
Получаем ответ: 4 см.
Пример 2. Цилиндр пересечен плоскостью, параллельной оси. Найти площадь сечения, если радиус основания и высота цилиндра соответственно равны 5 см и 10 см, а расстояние от оси цилиндра до плоскости сечения – 3 см.
Решение. Сделаем рисунок (рис. 12.29).
Рис. 12.29
Сечением цилиндра является прямоугольник, одна из сторон которого – хорда окружности основания (ВС), вторая – образующая цилиндра (ВА). Образующая равна высоте, значит ВА = 10 см. Необходимо найти хорду ВС. Расстояние от оси ОО1 до плоскости сечения – это перпендикуляр, опущенный из точки О1 на хорду ВС. Проведя радиусы О1С и О1В, получим равнобедренный треугольник Высота O1D является его медианой, значит BD = DC. Из найдем BD:
Тогда BC = 2BD = 8 см. Площадь сечения:
Получаем ответ: 80 см2.
Пример 3. Диагональ сечения цилиндра, параллельного его оси, равна d и образует угол a с образующей цилиндра. Найти площадь полной поверхности цилиндра, если секущая плоскость отсекает от окружности основания часть.
Решение. Сделаем рисунок (рис. 12.30).
Рис. 12.30
Площадь полной поверхности цилиндра вычисляется по формуле (12.5).
Чтобы найти высоту Н (образующую), рассмотрим В нем Тогда
Для нахождения радиуса рассмотрим равнобедренный в котором OA = OD = R. Так как по условию сечение отсекает от окружности основания часть, значит По теореме косинусов найдем радиус:
т. е.
Тогда откуда получаем:
Вычисляем:
Получаем ответ:
Пример 4.Диагонали развертки боковой поверхности цилиндра образуют острый угол, равный a. Высота цилиндра равна h. Найти объем цилиндра.
Решение. Сделаем рисунок (рис. 12.31).
Рис. 12.31
Чтобы найти объем, необходимо знать радиус основания цилиндра. Рассмотрим развертку боковой поверхности цилиндра – прямоугольник ABCD: AD = h, BC = 2pR,где R – неизвестный радиус основания. Точка О – середина диагоналей. Из точки О опустим перпендикуляр OD, и вычислим:
с другой стороны
Приравнивая выражения для нахождения OD, находим R:
т. е.
Вычисляем объем цилиндра по формуле (12.6):
Получаем ответ:
Дата добавления: 2015-09-29; просмотров: 1838;