Приток к галерее в зонально–неоднородном пласте

Рис. 2.9 . Схема зонально-неоднородной галереи

Пусть горизонтальный пласт постоянной толщиной h и шириной B имеет проницаемость, которая меняется вдоль направления фильтрации несжимаемой жидкости оси x. Давление на контуре питания и галерее pk и pг, длина L. Необходимо рассчитать дебит скважины и распределение давления по длине галереи.

При фильтрации несжимаемой жидкости объемный расход через любое поперечное сечение будет одинаковым. Считая, что фильтрация происходит по закону Дарси, запишем:

. (2.54)

Разделяя переменные в этом уравнении, получим:

. (2.55)

Интегрируя полученное уравнение по давлению от pг до p(x), а по длине галереи xг до x найдем распределение давления по пласту

. (2.56)

Для нахождения расхода подставим в уравнение (2.50) граничное условие x = L, p(L) = pk и найдем дебит скважины:

. (2.57)

Будем считать, что этот неоднородный пласт является однородным пластом с проницаемостью kср. Тогда дебит такого пласта определяться по формуле:

. (2.58)

Сравнивая формулы для неоднородного и однородного пласта можно найти среднюю проницаемость

. (2.59)

Рассмотрим частный случай, когда пласт вокруг скважины состоящий из n зон. Длина i – той зоны i, проницаемостью ki. Тогда интеграл в формуле расчета средней проницаемости можно разбить на сумму интегралов по каждой зоне, которые вычисляются:

. (2.60)

В этом случае среднюю проницаемость удобно рассчитать по формуле:

. (2.61)

а давление на внешней границе j – той зоны

. (2.62)

Последнюю формулу удобно использовать, если заданы дебиты и давление на галерее. Если же заданы давления на галерее и контуре питания, то из последней формулы удобно исключить дебит Q, тогда получим:

. (2.63)

На Рис. 2.10 показано распределение давления по длине галереи состоящей из двух пропластков с проницаемостями k1 и k2 для однородного пласта и двух предельных случаев неоднородного пласта.

 
 

Рис. 2.10. Предельные случаи распределение давления по галерее в зонально-неоднородном пласте








Дата добавления: 2015-09-25; просмотров: 2180;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.