Лабораторная работа № 10
Термическая обработка деформируемых алюминиевых сплавов
Цель работы
1. Ознакомиться с основами теории и практики термической обработки алюминиевых сплавов.
2. Экспериментально выполнить закалку термически упрочняемого алюминиевого сплава, оценить влияние закалки на свойства сплава.
3. Экспериментально исследовать изменение свойств сплава после закалки и естественного старения в течение различных периодов времени, если сплав поддается естественному старению, а также провести искусственное старение, определив оптимальную температуру старения при постоянном времени и оптимальное время старения при постоянной температуре.
4. Выявить, изучить с помощью оптического микроскопа и зарисовать структуру типичных алюминиевых сплавов в различном состоянии, указав фазовый состав, свойства и применение этих сплавов.
Содержание работы
Чистый алюминий - легкий металл (g = 2,7 т/м3) с низкой температурой плавления (660°С). Кристаллическая решетка - ГЦК с периодом
а = 4,041 кХ. Алюминий не имеет аллотропических модификаций, обладает высокой теплопроводностью, электропроводностью и очень высокой скрытой теплотой плавления. Это химически активный металл, но образующаяся на его поверхности плотная окисная пленка из Аl203 предохраняет его от коррозии.
Характерные свойства алюминия - высокая пластичность и малая прочность. В зависимости от степени чистоты алюминий имеет предел прочности sв =60...150 МПа, относительное удлинение при разрыве d = 40%, модуль упругости Е =7×104 МПа.
В качестве конструкционных материалов применяют в основном сплавы алюминия с различными легирующими элементами, которые в зависимости от степени легированности и способов производства из них деталей могут быть деформируемыми и литейными. Кроме того, сплавы подразделяются на термически неупрочняемые и термически упрочняемые.
К термически неупрочняемым сплавам относят в основном сплавы алюминия с магнием, марганцем, кремнием; к термически упрочняемым - сплавы системы Al-Cu, Al-Zn-Cu-Mg, Al-Mg-Li, Al-Be-Mgи др.
Возможность упрочнения путем закалки основана, как правило, на переменной в зависимости от температуры растворимости легирующих элементов в алюминии. Это позволяет при нагреве растворить в алюминии значительную часть легирующих элементов, а при последующем быстром охлаждении зафиксировать пересыщенный твердый раствор, что сопровождается упрочнением. Иногда дополнительное существенное упрочнение может быть получено при старении закаленных сплавов.
Процессы, протекающие в термически упрочняемых алюминиевых сплавах при закалке и старении, рассмотрим на примере термообработки сплавов алюминия с медью типа дуралюминов, например Д1. Состав сплава Д1 - Аl + 3,8... 4,8% Сu+ 0,4... 0,8% Мg + 0,4...0,8% Мn. Диаграмма состояния Al - Сu(СuАl2) показана на рис. 10.1, а схема закалки и старения дуралюмина – на рис. 10.3.
Рис. 10.1. Диаграмма состояния Al - Сu(СuАl2)
и интервал закалочных температур
Как видно из рис. 10.1, при комнатной температуре в алюминии растворяется 0,2% меди. Максимальная растворимость меди в алюминии при температуре 548°С (точка Е) составляет 5,7%.Все сплавы с содержанием меди до 5,7% путем нагрева выше линии GЕ могут быть переведены в однофазное состояние. В равновесии в этих сплавах при комнатной температуре структура состоит из a-твердого раствора меди в алюминии и интерметаллидной фазы СuАl2 (q-фаза) (рис.10.2).
Температура нагрева дуралюмина под закалку выбирается так, чтобы при нагреве распалась q-фаза и вся медь перешла в a-твердый раствор в алюминии. На диаграмме рис. 10.1 эта температура выше линии GЕ. При довольно большом содержании в сплаве меди его легко перегреть выше линий АЕ. Это приведет к началу плавления сплава, что недопустимо. Поэтому температуру нагрева сплава под закалку выдерживают с жестким допуском (для дуралюмина Д1 – 500 + 5°С). Наиболее стабильные результаты получаются при нагреве деталей в расплаве солей. Закалка деталей из дуралюмина проводится в воде.
Рис. 10.2. Микроструктура деформированного отоженного
Дата добавления: 2015-09-18; просмотров: 1055;