Уравнение состояния

Для равновесной термодинамической системы существует функциональная связь между параметрами состояния, ко­торая называется уравнением со­стояния. Опыт показывает, что удель­ный объем, температура и давление про­стейших систем, которыми являются газы, пары или жидкости, связаны термическим уравнением состо­яния вида .

Уравнению состояния можно придать другую форму:

Эти уравнения показывают, что из трех основных параметров, определяю­щих состояние системы, независимыми являются два любых.

Для решения задач методами термо­динамики совершенно необходимо знать уравнение состояния. Однако оно не мо­жет быть получено в рамках термодина­мики и должно быть найдено либо экспе­риментально, либо методами статистиче­ской физики. Конкретный вид уравнения состояния зависит от индивидуальных свойств вещества.

Уравнение состояния идеальных га­зов

Из уравнений (1.1) и (1.2) следует, что .

Рассмотрим 1 кг газа. Учитывая, что в нем содержится N молекул и, следова­тельно, , получим: .

Постоянную величину Nk, отнесен­ную к 1 кг газа, обозначают буквой R и называют газовой постоян­ной. Поэтому

, или . (1.3)

Полученное соотношение представляет собой уравнение Клапейрона.

Умножив (1.3) на М, получим урав­нение состояния для произвольной массы газа М:

. (1.4)

Уравнению Клапейрона можно при­дать универсальную форму, если отнести газовую постоянную к 1 кмолю газа, т. е. к количеству газа, масса которого в килограммах численно равна молеку­лярной массе μ. Положив в (1.4) М=μ и V=V μ, получим для одного моля урав­нение Клапейрона — Менделеева:

.

Здесь — объем киломоля газа, а — универсальная газовая постоянная.

В соответствии с законом Авогадро (1811г.) объем 1 кмоля, одинаковый в одних и тех же условиях для всех иде­альных газов, при нормальных физических условиях равен 22,4136 м3, поэтому

Газовая постоянная 1 кг газа составляет .

Уравнение состояния реальных га­зов

В реальных газах вотличие от иде­альных существенны силы межмолеку­лярных взаимодействий (силы притяже­ния, когда молекулы находятся на значи­тельном расстоянии, и силы отталкивания при достаточном сближении их друг с другом) и нельзя пренебречь собствен­ным объемом молекул.

Наличие межмолекулярных сил от­талкивания приводит к тому, что молеку­лы могут сближаться между собой толь­ко до некоторого минимального расстоя­ния. Поэтому можно считать, что свобод­ный для движения молекул объем будет равен , где b — тот наименьший объем, до которого можно сжать газ. В соответствии с этим длина свободного пробега молекул уменьшается и число ударов о стенку в единицу времени, а следовательно, и давление увеличива­ется по сравнению с идеальным газом в отношении , т. е.

.

Силы притяжения действуют в том же направлении, что и внешнее давле­ние, и приводят к возникновению молеку­лярного (или внутреннего) давления. Сила молекулярного притяжения каких-либо двух малых частей газа пропорцио­нальна произведению числа молекул в каждой из этих частей, т. е. квадрату плотности, поэтому молекулярное давле­ние обратно пропорционально квадрату удельного объема газа: рмол = а/v2, где а — коэффициент пропорциональности, зависящий от природы газа.

Отсюда получаем уравнение Ван-дер-Ваальса (1873 г.):

,

или

.

При больших удельных объемах и сравнительно невысоких давлениях ре­ального газа уравнение Ван-дер-Ваальса практически вырождается в уравнение состояния идеального газа Клапейрона, ибо величина a/v2

(по сравнению с p) и b (по сравнению с v) становятся прене­брежимо малыми.

Уравнение Ван-дер-Ваальса с ка­чественной стороны достаточно хорошо описывает свойства реального газа, но результаты численных расчетов не всег­да согласуются с экспериментальными данными. В ряде случаев эти отклонения объясняются склонностью молекул ре­ального газа к ассоциации в отдельные группы, состоящие из двух, трех и более молекул. Ассоциация происходит вслед­ствие несимметричности внешнего элек­трического поля молекул. Образовавши­еся комплексы ведут себя как самостоя­тельные нестабильные частицы. При столкновениях они распадаются, затем вновь объединяются уже с другими мо­лекулами и т. д. По мере повышения тем­пературы концентрация комплексов с большим числом молекул быстро уменьшается, а доля одиночных молекул растет. Большую склонность к ассоциа­ции проявляют полярные молекулы во­дяного пара.








Дата добавления: 2015-09-02; просмотров: 668;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.