Математическим ожиданием непрерывной случайной величины с плотностью распределения называется число, определяемое равенством

(4.2)

При этом предполагается, что несобственный интеграл, стоящий в правой части равенства (4.2) существует.

Рассмотрим свойства математического ожидания. При этом ограничимся доказательством только первых двух свойств, которое проведем для дискретных случайных величин.

1°. Математическое ожидание постоянной С равно этой постоянной.
Доказательство.
Постоянную можно рассматривать как случайную величину , которая может принимать только одно значение c вероятностью равной единице. Поэтому .

2°. Постоянный множитель можно выносить за знак математического ожидания, т.е. .

Доказательство. Используя соотношение (4.1), имеем

3°. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий этих величин:

(4.3)

4°. Математическое ожидание произведения двух независимых случайных величин равно произведению математических ожиданий этих величин:

(4.4)

Под суммой (произведением) двух случайных величин и понимают случайную величину , возможные значения которой состоят из сумм (произведений) каждого возможного значения величины и каждого возможного значения величины .

 

 

2. Дисперсия и ее свойства. Среднее квадратическое отклонение.

Во многих практически важных случаях существенным является вопрос о том, насколько велики отклонения случайной величины от ее математического ожидания.

Предварительно рассмотрим пример. Пусть две случайные величины и заданы следующими рядами распределения

 

Значения -0,2 -0,1 0,1 0,2
Вероятности 0,25 0,25 0,25 0,25
Значения -50 -40
Вероятности 0,25 0,25 0,25 0,25

 

Легко убедится в том, что математические ожидания этих величин одинаковы и равны нулю:

Однако разброс значений этих величин относительно их математического ожидания неодинаков. В первом случае значения, принимаемые случайной величиной , близки к ее математическому ожиданию, а во втором случае далеки от него. Для оценки разброса (рассеяния) значений случайной величины около ее математического ожидания вводится новая числовая характеристика - дисперсия.

Дисперсией случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математичеcкого ожидания:

(4.5)

Казалось бы, естественным рассматривать не квадрат отклонения, а просто отклонение случайной величины от ее математического ожидания. Однако математическое ожидание этого отклонения равно нулю, так как

Здесь мы воспользовались тем, что постоянно, а математическое ожидание постоянной есть эта постоянная. Можно было бы принять за меру рассеяния математическое ожидание модуль отклонения случайной величины от ее математического ожидания: . Однако, как правило, действия связанные с абсолютными величинами, приводят к громоздким вычислениям. Поэтому приняли то, что приняли.

Выведем теперь другую формулу для расчета дисперсии.

Пусть - дискретная случайная величина, принимающая значения соответственно с вероятностями . Очевидно, что случайная величина принимает значения

с теми же вероятностями . Следовательно, согласно определению математического ожидания дискретной случайной величины, имеем

(4.6)

Если же - непрерывная случайная величина с плотностью распределения , то по определению

(4.7)

Принимая во внимание определение дисперсии и свойства математического ожидания, имеем

Так как и - постоянные, то, используя свойства математического ожидания, получим

Следовательно,

Откуда окончательно находим

(4.8)

 

Рассмотрим теперь свойства дисперсии.

 








Дата добавления: 2015-09-11; просмотров: 669;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.