ПРОСТЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

 

Германий

В земной коре содержание германия невелико и составляет при­мерно 0,001%. Германий почти не имеет своих руд. Единственная руда германид содержит меди, железа и цинка гораздо больше, чем германия. В ничтожных количествах (0,01...0,5%) германий содер­жится в цинковых рудах, угольной пыли, золе, саже и морской воде. Он рассеян в силикатах, сульфидных минералах, а также в минера­лах, представляющих собой сульфасоли. Большое количество германия (до 100 г/т) содержат бурые сорта угля.

Получают германий в результате сложного технологического процесса из продуктов сгорания бурого угля. Окончательным про­дуктом этого процесса является монокристаллический германий в виде слитков.

Кристаллический германий – твердый, хрупкий материал с характерным металлическим блеском. Кристаллизуется в виде кубической решетки типа алмаза. Ширина запретной зоны при комнатной температуре =0.75эВ, при температуре 300К =0.67эВ. Рабочая температура полупроводниковых приборов на основе германия не превышает 80°С. Концентрация собственных носителей заряда ni=2.5×1019 м-3. Собственное удельное электрическое сопротивление =0.68Ом×м. Электропроводимость германия зависит от температуры. При низких температурах (Т<5.4К) и высоких давлениях (Р>11ГПа) германий переходит в сверхпроводящее состояние.

При плавлении удельная проводимость германия возрастает скачком примерно в 13 раз. При дальнейшем нагреве удельная проводимость сначала почти не изменяется, а начиная с температуры 1100°С - падает. В момент плавления германия происходит увеличение его плотности на 5 - 6%.

Для производства полупроводниковых приборов используют германий электронного и дырочного типов с определенным удель­ным электрическим сопротивлением. Тип проводимости и удель­ное электрическое сопротивление германия определяется количе­ством введенных в исходный материал примесей. Монокристалли­ческий германий различных марок, легированный сурьмой, мышь­яком, галлием и золотом, обладает удельным электрическим сопро­тивлением от 0,0004 до 45 Ом×м. Легирующие примеси вводят в определенных количествах в рабочий объем расплавленного поли­кристаллического германия перед выращиванием монокристаллов.

Германий легируют нейтральными, донорными, акцепторными и создающими глубокие энергетические уровни примесями.

Нейтральные примеси не меняют тип электропроводности по­лупроводникового материала и количество носителей заряда в нем. К нейтральным примесям германия относят инертные газы, азот и аргон и элементы IV группы Периодической системы химических элементов Д. И. Менделеева: кремний, свинец, олово.

Основными акцепторными примесями в германии являются эле­менты III группы Периодической системы химических элементов Д. И. Менделеева: галлий, индий, алюминий.

Донорные уровни в германии создают элементы V группы Пе­риодической системы химических элементов Д.И.Менделеева: мы­шьяк, сурьма, висмут, фосфор, а также элемент I группы - литий.

Глубокие энергетические уровни в запретной зоне германия об­разуют многие элементы I, II, VI, VII и VIII групп Периодичес­кой системы химических элементов Д.И. Менделеева. Однако ра­створимость этих элементов, как правило, значительно меньше ра­створимости акцепторов и доноров.

Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощности, умножения двух величин в приборах вычислительной техники и т.д. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз с большой светосилой (для инфракрасных лучей), оптических фильтров.

Рабочий диапазон температур германиевых приборов от -60 до +70 °С, при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный - в три раза. При охлаждении до - (50 - 60)°С прямой ток падает на 70 - 75%. Германиевые приборы должны быть защищены от действия влажности воздуха.

Использование монокристаллических слитков германия в тех­нологии изготовления полупроводниковых приборов и интеграль­ных микросхем связано с большими потерями материала при меха­нической обработке (резке слитков на пластины, шлифовке и поли­ровке пластин). Поэтому широко применяют эпитаксиальные плен­ки германия, которые получают осаждением монокристалического германия в виде монокристаллических пленок на подложки из различных материалов (германий, кремний, кварц, сапфир).

Кремний

Кремний является элементом IV группы Периодической систе­мы химических элементов Д.И.Менделеева. После кислорода это самый распространенный элемент в земной коре. Он составляет при­мерно 1/4 массы земной коры. Однако в свободном состоянии в природе он не встречается. Его соединениями являются такие рас­пространенные природные материалы, как кремнезем и силикаты. Песок и глина, образующие минеральную часть почвы, также пред­ставляют собой соединения кремния.

Из соединении кремний получают несколькими способами. Чаще всего используют метод восстановления четыреххлористого крем­ния SiCl4 парами цинка или водорода.

В технологическом отношении кремний более сложный матери­ал, чем германий, так как он имеет высокую температуру плавле­ния 1414°С и в расплавленном состоянии химически активен (всту­пает в реакцию со всеми материалами, из которых изготавливают тигли).

Кристаллический кремний - темно-серое твердое и хрупкое ве­щество с металлическим блеском, химически довольно инертное.

Основной параметр полупроводниковых приборов - ширина запретной зоны при температуре 20°С W=1,12 эВ. Это позволяет создавать кремниевые полупроводниковые приборы с относитель­но высокой рабочей температурой (до 125°С). Верхний темпера­турный предел работы кремниевых приборов достигает 200 °С.

Концентрация собственных носителей зарядов при комнатной температуре ni= 3×1016м-3. Удельное электрическое сопротивление кремния с собственной электропроводностью = 2,3×103Ом·м, резко уменьшается при увеличении концентрации примесей. При низких температурах (Т<6,7 К) и высоких давлениях (Р>12 ГПа) кремний переходит в сверхпроводящее состояние, т.е. удельное элек­трическое сопротивление кремния уменьшается до нуля.

При использовании монокристаллического кремния в полупро­водниковом производстве имеют место большие потери этого ма­териала. Это связано с тем, что большинство полупроводниковых приборов основано на процессах, происходящих в очень узких гра­ничных или поверхностных слоях полупроводника. Остальной объем монокристалла является паразитной частью и чаще всего ухудшает параметры прибора. Большая часть материала теряется при механической обработке слитков (резке на пластины, шлифов­ке, полировке и т.д.).

С целью уменьшения этих потерь в полупроводниковом произ­водстве применяют кремний в виде монокристаллических тонких слоев, которые осаждают на объемные монокристаллы, которые на­зывают подложками.

Такие монокристаллические слои, сохраняющие кристаллогра­фическую ориентацию подложки, называют эпитаксиалъными. В ка­честве подложек используют монокристаллы кремния, сапфира, ко­рунд и др.

В зависимости от характера влияния на тип электропроводности примеси делят на нейтральные, донорные, акцепторные и создающие в запретной зоне кремния глубокие энергетические уровни.

К нейтральным примесям кремния относят водород, азот, инерт­ные газы, а также элементы IV группы Периодической системы хи­мических элементов Д.И.Менделеева (германий, олово, свинец).

Основными донорными примесями являются элементы V группы Периодической системы химических элементов Д.И.Мен­делеева (фосфор, мышьяк, сурьма, висмут).

В качестве акцепторной примеси для кремния в основном используют элементы III группы Периодической системы химичес­ких элементов Д.И.Менделеева (бор, алюминий).

Элементы I,II,VI,VII гpyпп создают в запретной зоне кремния глубокие энергетические уровни и могут быть донорами и акцепторами. В качестве таких примесей чаще всего применяют золото и цинк. При легировании золотом в крем­нии образуются дополнительные центры рекомбинации носителей заряда, что уменьшает время жизни неравновесных носителей за­ряда.

Легирование кремния производят в процессе получения объем­ных монокристаллов и эпитаксиальных пленок.

 

КОНТАКТНЫЕ ЯВЛЕНИЯ








Дата добавления: 2015-11-12; просмотров: 1515;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.