Примесная проводимость полупроводников. Примесная проводимость обусловлена несовершенством кристаллической структуры полупроводника
Примесная проводимость обусловлена несовершенством кристаллической структуры полупроводника. Дефекты в кристаллической решетке вызывают образование дополнительных энергетических уровней внутри запретной зоны (рис. 3,б, рис. 4,б). Благодаря этому для перехода электрона с дополнительного уровня в зону проводимости или из валентной зоны на дополнительный уровень требуется энергия, меньше ширины запретной зоны W. В случае перехода электрона с дополнительного энергетического уровня в зону проводимости появляется дополнительный электрон проводимости. При переходе электрона с валентной зоны на дополнительный энергетический уровень образуется дополнительная дырка проводимости.
1. Электропроводимость полупроводников n-типа
Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент V группы Периодической системы химических элементов Д. И. Менделеева, например фосфор (рис. 2,а), то четыре из пяти валентных электронов фосфора будут участвовать в формировании ковалентных связей с соседними атомами основного элемента кремния. Пятый валентный электрон фосфора связан только со своим атомом, и прочность этой связи много меньше прочности ковалентной связи. Для перехода этого электрона на дополнительный энергетический уровень (рис. 2,б) требуется энергия, много меньше энергии ширины запретной зоны W. Оторвавшийся от атома фосфора пятый электрон превращается в электрон проводимости. На месте оторвавшегося электрона образуется дырка. Она остается неподвижной, дырочная проводимость в таком полупроводнике отсутствует и его проводимость носит электронный характер.
Полупроводники с преобладанием электронной электропроводности называют электронными или n-типа.
Рис. 2. Полупроводник n-типа:
а – модель кристаллической решетки; б - зонная диаграмма
2. Электропроводимость полупроводников р-типа
Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент III группы таблицы Д. И. Менделеева, например бора, то все три валентных электрона бора участвуют в образовании ковалентных связей с кремнием, одна связь кремния остается незаполненной. Эту связь можно заполнить электроном соседнего атома кремния, образовав четвертую ковалентную связь с примесным атомом бора (рис.3,а). Для этого электрон должен получить энергию, значительно меньшую, чем энергия запретной зоны (рис.3,б).
Рис. 3. Полупроводник р-типа:
а – модель кристаллической решетки; б - зонная диаграмма
Приняв дополнительный электрон, атом бора ионизируется и становится отрицательным ионом. При этом одна из четырех связей соседнего атома кремния остается незавершенной, т.е. образуется дырка. В результате тепловых колебаний решетки эта незавершенная связь может быть заполнена электроном соседнего атома, образуя новую дырку. Таким образом, в результате исчезновения одних дырок и образования новых происходит хаотичное движение дырок в пределах кристалла, которые являются носителями заряда. Поэтому электропроводность полупроводника носит дырочный характер.
Полупроводники с преобладанием дырочной электропроводности называют дырочными или р-типа.
Введение примесей в полупроводник приводит к появлению примесной электропроводности, возникающей в результате ионизации атомов примесей. В отличие от собственной примесная электропроводность образуется благодаря наличию носителей заряда только одного знака (электронов в полупроводниках n-типа и дырок в полупроводниках p-типа).
Возможность управлять значением и типом электропроводности полупроводников в результате введения примесей лежит в основе создания всех полупроводниковых приборов.
Дата добавления: 2015-11-12; просмотров: 1233;