Принцип действия биполярных транзисторов. Изучим принцип усиления биполярного транзистора, для чего обратимся к рисунку 3, на котором изображено движение носителей заряда в транзисторе p-n-p
Изучим принцип усиления биполярного транзистора, для чего обратимся к рисунку 3, на котором изображено движение носителей заряда в транзисторе p-n-p структуры, включенном по схеме с общей базой. На нем протяженности областей отражены без соблюдения масштаба и реальных размеров.
Рис. 3. Движение носителей заряда в транзисторе.
На рисунке знаком ⊕ показаны дырки, а знаком ⊖ – электроны. В связи с тем, что в работе компонента участвуют и электроны, и дырки, такой транзистор именуют биполярным. Выводы база-эмиттер транзистора будем считать входом каскада, а выводы база-коллектор – его выходом.
Благодаря включению двух источников питания переход база-коллектор закрыт, а переход база-эмиттер открыт. Из-за этого по переходу база-эмиттер будет течь эмиттерный ток, порожденный движением преимущественно электронов. Он течет по цепи от положительного полюса источника питания база-эмиттер, по резистору R1, от области эмиттера транзистора к области базы, а затем к отрицательному полюсу этого же источника питания. Резистор R1 символизирует внутреннее сопротивление источника сигнала. Направление протекания тока символически стрелками отражено на рисунке. Эффективность инжекции характеризует коэффициент инжекции. В данном случае он равен отношению тока эмиттера, вызванного движением только основных носителей заряда, к полному току эмиттера, обусловленному миграцией и дырок, и электронов. Область базы обогащается инжектируемыми носителями заряда, которые в области эмиттера были основными, а в области базы стали неосновными. Поле коллекторного перехода является ускоряющим для попавших в область базы носителей зарядов, и это поле их втягивает в коллекторный переход. Происходит их рекомбинация с основными носителями заряда области базы. Однако она незначительна в связи с тем, что толщина области базы много меньше, чем двух других областей, и электроны почти беспрепятственно преодолевают область базы и оказываются в области коллектора, в которой они вновь станут основными носителями заряда. Успевшие рекомбинировать электроны вызывают протекание небольшого тока через вывод базы транзистора, который называют рекомбинационным. Рекомбинация некоторого количества носителей заряда в области базы происходит постоянно до тех пор, пока каскад не будет обесточен, так как электроны будут все время поступать от положительного полюса источника питания база-эмиттер. Обогащение области коллектора носителями заряда, которые в ней будут основными, приводит к протеканию коллекторного тока транзистора. Он течет по цепи от положительного полюса источника питания база-коллектор, по области базы, затем по области коллектора, по нагрузочному резистору R2, к отрицательному полюсу источника питания. Очевидно, что даже незначительное изменение напряжения база-эмиттер вызывает существенно большее изменение напряжения база-коллектор и, отдавая небольшую мощность управляющего сигнала, поданного на базу транзистора, можно управлять многократно большей мощностью нагрузки. Следовательно, рассматриваемый каскад может осуществить усиление сигнала по напряжению. Ток эмиттера транзистора при любом варианте включения последнего равен сумме токов коллектора и базы.
Для усиления сигналов любые транзисторные каскады тратят энергии источников питания, к которым подключены, и при этом всегда теряют часть энергии, и мощности потерь вызывают тепловыделения в компонентах.
Дата добавления: 2015-08-21; просмотров: 789;