Основные черты геохимии пегматитов.
Согласно Ферсмана А.Е., в результате дифференциации первичного магматического расплава могут образовываться различные частные магмы, в том числе и остаточная гранитная. Она будет отличаться от исходной магмы более высоким содержание кремнекислоты, щелочей, летучих компонентов и редких элементов. Из гранитной магмы выделяются летучие вещества, которые дают начало пневматолитовым и гидротермальным процессам, из нее выкристаллизовывается большая часть элементов в форме минералов- полевых шпатов, слюд, кварца и др., образующих граниты. Но остается еще флюидно-надкритический остаточный расплав, при кристаллизации которого образуются пегматитовые жилы.
Пегматит – жильное тело, в основном связанное с магматическим гранитным остатком, главная часть кристаллизации которого лежит в пределах 700-350оС. К характерным особенностям гранитных пегматитов относится письменная структура, которая получается при одновременной кристаллизации из расплава полевого шпата и кварца («еврейский камень»).
В настоящее время выделяют пегматиты:
1) слюдоносные. Они формируются на глубинах свыше 6 км и состоят из плагиоклаза, микроклина, кварца, мусковита, биотита, шерла, граната, апатита, берилла. Близкие по условиям образования пегматиты, состоящие, в основном, из полевых шпатов и кварца, называются керамическими.
2) редкометальные. Они образуются на глубинах 6-4 км от поверхности и состоят из микроклина (нередко амазонита), кварца, альбита, сподумена, мусковита, лепидолита, берилла, цветных и полихромных турмалинов, колумбита, танталита, касситерита, поллуцита, топаза и др.
3) хрусталеносные, образующиеся на глубинах 4-3 км. Они состоят из микроклина, альбита, кварца, мусковита, биотита, а в полостях-занорышах – из топаза, ювелирного золотистого берилла, оптического флюорита, аметиста и пьезооптического горного хрусталя.
Процесс кристаллизации пегматитов состоит из отдельных стадий, обусловленных резкими изменениями физико-химического равновесия в среде, богатой летучими соединениями, с частичным растворением ранее выделившихся компонентов.
По Ферсману выделяют следующие геофазы пегматитового процесса:
Геофаза В: 800-700оС – образуются контактовые зоны отделенных от вмещающих пород пегматитов, структура – аплитовая (мелкозернистая). Содержат гранат и магнетит.
Геофаза С: 700-600оС – образование письменных гранитов.
Геофазы D-Е: 600-500оС – пегматоидные образования (флюидно-газовые). Минералы характерные для пегматитовых жил– мусковит, берилл, топаз, дымчатый кварц, полевые шпаты, турмалин (шерл).
Геофазы F-G: 500-400оС – надкритическая зона (флюидно-гидротермальная). Образуются пневматолитовые минералы – рубеллит, зеленые слюды и др. с характерными замещениями ранее образовавшихся минералов.
Геофазы H-K: 400-50оС – гидротермальный процесс. Характерны вначале зеленые слюды, потом сульфиды, под конец - карбонаты, цеолиты.
Геофаза L: 50-0оС – гипергенная. Образование глинистых вторичных минералов – вторичный кальцит, халцедон, вторичный кварц.
Власов К.А. показал, что процесс образования сложных пегматитов, содержащих редкометальные минералы, удобно разделить на 4 стадии и выделить 4 типа пегматитов
Классификация Власова (для пегматитов, содержащих редкометальные минералы)
1. Мелкозернистые (аплитовые) пегматиты – характеризуют начало пегматитового процесса, когда полевые шпаты и кварц кристаллизуются почти одновременно, образуя письменные структуры («еврейский камень»), а также равномернозернистые выделения, без каких-либо явлений замещения. Эти пегматиты характерны для маломощных жил, где при малом количестве летучих соединений быстрее падает температура и быстрее идет кристаллизация. Этот тип располагаются в самых низких частях крутых жил, поскольку летучие соединения поднимаются выше, где и дают пегматиты следующих типов.
2. Крупнозернистые полевошпатовые (блоковые) пегматиты – из остаточного расплава-раствора кристаллизуются крупные полевые шпаты, а также происходит начало обособления и концентрации редких элементов. В этих пегматитах развиты процессы замещения, которые выражаются в замещении КПШ мусковитом и альбитом. Залегают выше первого типа.
3. Полнодифференцированный пегматит – минералы в нем размещаются более или менее четкими полосами, этот тип залегает еще выше, где концентрация летучих соединений (в том числе редких элементов) еще значительней и застывание происходит медленнее. Характерно наличие крупных блоков кварца наряду со сплошными зонами полевых шпатов. Кристаллизуются минералы, содержащие редкие земли: берилл, сподумен.
4. Редкометальнозамещенный пегматит – характеризуется широким развитием явлений замещения, в результате которых возникает самостоятельная зона, сложенная пластинчатым альбитом (клевеландитом), мусковитом и поздним кварцем. Характерно повышенное содержание летучих веществ, которые разъедают и замещают ранее выделившиеся минералы и высокое содержание редкометальных минералов. Находятся в самой верхней части, т.е. в местах наибольшей концентрации летучих веществ и имеют наибольшее практическое значение.
Гранитные пегматиты значительно богаче элементами, чем продукты протокристаллизации, особенно литием, бором, галлием, рубидием, танталом, ниобием и др. Все элементы гранитных пегматитов делятся на:
1. Ведущие элементы – Li, Be, O, Si, Al, Na, K, Rb, Cs, TR
2. Главные - B, F, P, Sc, Sn
3.Нормальные - He, Ce, Ca, Ti, Mn, Ga, Ce, Y, Zr, Nb
4.Случайные – N, C, Mg, S, V, Cr, Fe, Cu, Zn
5. Запрещенные – Ne, Ar, Co, Ni, As, Ag, Cd, Pt, Hg
Подчеркнуты элементы с четными номерами.
Геохимические особенности пегматитов:
1. В гранитных пегматитах накапливаются, преимущественно, нечетные элементы. В этом – самое главное отличие конечной кристаллизации от протокристаллизации и главной кристаллизации.
2. В пегматитах накапливаются элементы с малыми ЭК – цезий, рубидий, натрий, калий.
3. В пегматитах накапливаются радиоактивные элементы – торий, уран, радий, олово, калий, рубидий.
4. В пегматитах накапливаются наименее устойчивые элементы с легко разлагающимися ядрами – литий, бериллий, бор.
5. В пегматитах преобладают ионы с валентностью 1 и 3 (водород-1, калий-1, натрий-1, алюминий-3, торий-3).
ЛЕКЦИЯ № 13
Основи геохімії систем. Геохімія постмагматичних систем і процесів
1. Общие сведения о постмагматических процессах.
2. Основные черты геохимии гидротермального процесса.
3. Практическое значение продуктов постмагматических процессов
- Общие сведения о постмагматических процессах
Постмагматические процессы – это процессы, связанные с летучими веществами, которые выделяются в процессе и после остывания магмы. Продукты постмагматической стадии образуются из остаточных магматических расплавов, являющихся самыми поздними продуктами магматической дифференциации.
По мере кристаллизации при увеличении количества летучих веществ в расплаве наступает момент выделения веществ в газовой фазе (пневматолитовый этап). Далее в результате миграции в породе и взаимодействия с ними газовая фаза охлаждается и переходит в состояние сжатого горячего (гидротермального) раствора. Гидротермальные растворы могут образовываться также в результате охлаждения газовой фазы, которая остается после кристаллизации расплава и выделяться как жидкие водные остаточные растворы из расплава.
К числу самых важных вопросов о рудных месторождениях относится вопрос о происхождении рудных компонентов гидротермальных жил. Разнообразные гипотезы сводятся к 3 основным группам:
Источники растворов:
- минералы гидротермальных жил были отложены постмагматическими водами. При температуре 450оС пары воды переходят в жидкое состояние.
- месторождения образовались при участии метеорных вод, выщелочивших рудные элементы. По этой гипотезе холодные метеорные воды приникали вниз, в нагретые части земной коры, и, постепенно нагреваясь, извлекали из различных пород, которые лежали на их пути, металлические элементы. Нагретые воды, содержащие в растворе ряд металлов, могли стать восходящими. Согласно этой гипотезе (Зандбергер) металлы в раствор поступали из боковых пород и концентрировались при движении метеорных вод к крупным трещинам, в которых и отлагалась руда.
- допускают возможность образования рудных жил как из метеорных, так и из магматических растворов (синтез первой и второй точек зрения).
Дата добавления: 2015-08-21; просмотров: 1212;