Лекція № 5. ХІМІЯ ФЕРМЕНТІВ

.

Наука про ферменти є окремою галуззю біохімії і називається ферментологія.

Вчення про ферменти лежить в основі найважливіших проблем фізіології і патології людини на молекулярному рівні.

Практично всі фізіологічні процеси в організмі забезпечуються каталітичною дією ферментів. І.П. Павлов назвав ферменти "збудниками життя".

  1. Номенклатура ферментів

Назва у ферментів досить складна і складається з декількох частин.

I. Назва субстрату (тобто речовини, на яку діє фермент).

II. Назва типу ферментативної реакції, що каталізує фермент.

III. Назва продукту реакції (Р) та її учасників.

IV. До назви фермента додають закінчення -аза. Наприклад, у печінці є фермент, що каталізує розщеплення глюкозо-6-фосфату на вільну глюкозу та фосфатну кислоту.

Глюкоза-6-фосфат-фосфогідролаза

В цій назві:

I. Назва субстрату - глюкоза - 6 - фосфат.

II. Назва продукту реакції - фосфорна кислота.

III. Тип реакції - гідроліз.

IV. Додається закінчення - аза.

В практиці збереглись і другі назви ферментів, що називаються тривіальними: пепсин, амілаза, трипсин. До них відносяться гідролітичні ферменти ШКТ.

 

  1. Особливості ферментативного каталізу

Каталіз - процес прискорення хімічної реакції під впливом каталізатора, який приймає участь у даному процесі, але до кінця реакції залишається хімічно незмінним. Каталізатори бувають органічні та неорганічні. Органічні каталізатори - це ферменти.

Між молекулами, які вступають в реакцію, існують сили притягування і відштовхування.

При недостатньому запасі енергії молекули необхідно активізувати, тобто додати їм необхідну кількість енергії, що називається енергією активізації. Активація молекул відбувається різними шляхами: нагріванням, опроміненням, підвищенням тиску і за допомогою каталізаторів.

Суть дії каталізаторів заключається в тому, що вони в нормальних фізіологічних умовах викликають перебудову субстрату за рахунок внутрішньо молекулярної перебудови. Це призводить до зниження енергії активізації і молекули можуть взаємодіяти без залучення додаткової енергії. Крім того, активовані молекули взаємодіють набагато швидше.

Характеристика ферментативного каталізу.

Ферменти є природними біологічними каталізаторами, і тому мають подібні властивості з неорганічними каталізаторами.

Суть ферментативної реакції характеризується слідуючими рівняннями.

 

Е + S ЕS Е + Р

Е - фермент, S - субстрат, Р - продукти реакції. ЕS - фермент субстратний комплекс.

Але ферменти відрізняються від неорганічних каталізаторів рядом параметрів. Ферменти на відміну від неорганічних каталізаторів є високомолекулярними полімерами, мають високу специфічність, низький оптимум температури (35-45ºС) фізіологічний діапазон рН, діють при атмосферному тиску і мають зворотність дії і велику швидкість ферментативної реакції.

 

Ферментативна реакція може йти як у прямому так і в зворотньому напрямку.

Активність ферментів може змінюватися в залежності від статі, віку, фізіологічного стану організму. Це не властиво неорганічним каталізаторам.

 

4. Хімічна природа ферментів

 

Це білки, що мають велику молекулярну масу рибонуклеаза – 12. 700 в.о., пепсин - 35.000 т. в.о. Ферменти, як і всі білки мають первинну, вторинну, третинну, четвертинну структури.

Первинна структура представляє собою послідовне з’єднання амінокислот і зумовлена спадковими особливостями організму. Саме первинна структура в значній мірі характеризує індивідуальність ферменту.

Вторинна структура представляє α – спіраль.

Третинна - має вид глобули і приймає участь у формуванні активного центру та інших властивостей ферментативної молекули.

Багато ферментів мають четвертинну структуру, що представляє собою об'єднання декількох субодиниць, що мають три рівні організації молекул. Ці субодиниці можуть розрізнятися між собою, як в кількісному, так і в якісному співвідношенні. Це привело до появи груп споріднених ферментів - ізоферментів, що представляють собою ряд форм одного і того ж ферменту. Вони каталізують одну і ту ж реакцію, але розрізняються по місцю локалізації, складу, і тому мають різні фізико-хімічні властивості: швидкості руху в електричному полі, оптиму температури.

Ізоферменти існують більш ніж у 100 ферментів. Наприклад, ЛДГ - каталізує утворення і окислення молочної кислоти. Цей фермент має четвертинну структуру і складається з чотирьох субодиниць, дві з яких представлені типом Н (heat - серце), дві М (muscul - м'язи). За назвою органів де знайдена їх найбільша активність. Різне співвідношення цих субодиниць призвело до появи 5-и ізоферментів ЛДГ.

ЛДГ - 1 (4Н) серце, печінка, мозок.

ЛДГ - 2 (ЗНІМ) нирки, легені.

ЛДГ - З (2Н2М) нирки, легені, мозок.

ЛДГ - 4 (ІНЗМ) - печінка, м'язи.

ЛДГ - 5 (4М) - печінка, м'язи.

Ці ізоферменти позначаються цифрами і в залежності від швидкості руху в електричному полі розділяються методом електрофорезу на 5 фракцій.

Відмінність у хімічному складі ферментів послужила основою для поділу їх на ферменти-протеїни та ферменти-протеїди.

Протеїни складаються тільки з амінокислот. Це в основному гідролітичні ферменти (пепсин, амілаза, ліпаза) ШКТ.

Складні ферменти протеїди мають небілкову частину кофермент і білкову - апофермент.

Коферменти можуть бути представленні мінеральними речовинами, їх називають металоферментами, активними формами вітамінів і нуклеозидтрифосфатами. Присутність вітамінів у складі ферментів визначає їх біологічне значення.

 

Присутність вітамінів у складі ферментів і визначає їх біологічне значення. Вітамін Кофермент Фермент Тип реакції
Тіамін В1 Тіамінпірофосфат Декарбоксилаза Декарбоксилювання (від щеплення СО2)
Піродоксін В6 Фосфопіродоксаль Амінотрансферази Перенесення аміногрупи
Вітамін В12 Кобамідні ферменти Трансметилази Перенесення метальної гр.

 

 

5. Властивості ферментів

 

Ферменти являються по своїй хімічній природі білками і характеризуються їх властивостями. Це високомолекулярні сполуки здатні утворювати колоїдні розчини мають властивості амфоретних електролітів, термолабільні. Окрім властивостей білків вони мають свої специфічні властивості - зворотність дії та специфічність.

Зворотність дії:

При вивченні дії ферментів біло встановлено, що деякі з них можуть каталізувати як пряму так і зворотну реакцію. Наприклад, ЛДГ забезпечує не тільки розпад молочної кислоти, але і її утворення. Вперше на таку властивість ферментів вказав А.Я.Данилевський (1888 рік), що далі було підтверджено роботами І.П.Павлова, А.І. Опаріна. Слід зазначити, що зворотність дії мають не всі ферменти.

Специфічність

Специфічність це одне з найбільш видатних властивостей ферментів. Ця властивість була відкрита ще в минулому столітті, коли було зроблено спостереження, що близькі по структурі речовини - просторові ізомери, розщеплюються зовсім різними ферментами. В основі специфічності лежить строга відповідність структури субстрату активному центру ферменту. Утворення фермент-субстратного комплексу відбувається слідуючим чином. Як було встановлено у первинному стані структура субстрату і активного центру не точно відповідають один одному. Але при їх взаємодії вони впливають один на одного таким чином, що їх просторові структури змінюються. В результаті, по образному вислову Е.Фішера субстрат підходить до ферменту, як ключ до замка. І стає можливим утворення комплексу субстрата з активним центром ферменту. Цю модель взаємодії називають іще моделлю ключа і замка.

Ступінь специфічності у ферментів різна і поділяється на абсолютну і відносну специфічність.

Відносну специфічність мають ферменти, кожен з яких діє на декілька речовин, що мають один тип зв'язку. Наприклад, протеїнази розщеплюють пептидний зв'язок - NH – СО.

Ферменти, що каналізують перетворення тільки одного субстрату мають абсолютну специфічність. Прикладом цього може бути амілаза, що гідролізує крохмаль до глюкози, сахараза, що розщеплює сахарозу на глюкозу і фруктозу.

 

Класифікація

 

В основу класифікації покладений тип ферментативної реакції. Ділять на 6 класів.

I. Оксидоредуктази. Каталізують окисновідповідні реакції (ЛДГ, ксинтино-оксидаза, що каталізує синтез сечової кислоти).

II. Трансферази. Ферменти здійснюють міжмолекулярний перенос різних функціональних груп (метилтрансферази транспортують метильні групи, амінотрансферази приймають участь у переносі аміногруп, гексокінази переносять фосфорну кислоту з АТФ на глюкозу).

III. Гідролази. Гідролізують різні сполуки шляхом розриву внутрішньо молекулярних зв'язків (пепсин, трипсин, амілаза, сахараза). При цьому відбувається розпад ефірних зв’язків.

IV. Ліази. Розщеплюють негідролічним шляхом сполуки з подвійними зв'язками. До них відносяться декарбоксилази, ферменти що каталізують відщеплення СО2 (лізиндекорбоксилаза) знаходиться в товстому відділі кишечнику і каталізує перетворення лізину з утворення кадаверіну. Декарбоксилази, також катілізують утворення з амінокислот біогенних амінів типу тир аміну, гістаміну.

V. Ізомерази. Каталізують взаємне перетворення субстратів. Глюкозо-6- фосфатізомераза забеспечує пряму і зворотну реакції між фруктозо-6- фосфатом і глюкозо-6-фосфатом.

VI. Лігази. Каталізують синтез органічних речовин з двох молекул з використанням енергії АТФ.

В прийнятій класифікації передбачають чотирьох значний код. Перша цифра - номер одного з головних класів, друга - підклас, що характеризує основні субстрати, третя - номер підкласу, який деталізує хімічні групіровки субстрату, четверта цифра являється порядковим номером ферменту, що відноситься до відповідного під-підкласу.

 

 

8. Локалізація ферментів

Ферменти локалізуються в органоїдах клітини, де проявляється їх діяльність. Виключення складають ферменти ШКТ, які виділяються у просвіт ШКТ в момент травлення і ферменти системи зсідання крові, що функціонують в кровоносних судинах.

В ядрі клітини знаходяться головним чином ті ферменти, які каналізують обмін нуклеїнових кислот: ДНК-полімерази, ДНК-лігази, РНК-полімерази.

Закономірний розподіл ферментів у різних органоїдах цитоплазми. Наприклад, ферменти тканинного дихання розташовані переважно в мембранах мітохондрій. Каталізатори біосинтезу білку знаходяться переважно в мембранах рибосом, а також в мітохондріях. Ферменти, що каналізують гідролітичне розщеплення органічних речовин (протеїнази, нуклеази, естерази) розташовані головним чином в лізосомах.

Фіксація ферментів в органоїдах клітини сприяє інтенсифікації і впорядкованості біохімічних процесів завдяки направленому контакту між собою, а не випад кованому зштовхуванню.

Клітинна організація ферментів також сприяє надходженню різних речовин в клітини і виведенню продуктів обміну, що є важливою умовою взаємодії біохімічних процесів і їх великої швидкості.

При зміні умов існування організму в процесі адаптації і особливо при патологічних процесах може порушуватися унікальна будова клітини і субклітинних структур, що пояснює відхилення в розподілі і функціях окремих ферментів, а також цілих ферментних систем. Наприклад, при дії іонізуючого випромінювання порушується унікальна структура мембран мітохондрій і в зв’язку з цим послаблюється фіксація на них таких ферментів, як піруватдегідрогеназа і α-кетоглуторатдегідрогеназа, що каналізують процеси декарбоксилування. В таких умовах порушується синтез АТФ, що приводить до стану енергетичного голоду в організмі. Також при променевих враженнях клітини підвищується проникливість лізосом і відбувається їх руйнування, що приводить до переходу в цитозоль гідролітичних ферментів, що підсилюють розщеплення білків нуклеїнових кислот і інших сполук.

Під впливом мікроорганізмів, продуктів їх обміну та обломків клітин також може відбуватися руйнування мембран лізосом. Ці фактори не тільки вивільнюють ферменти з лізосом, а й грають роль індукторів їх біосинтезу. Отже ферменти лізосом не тільки виконують захисну функцію, а і являються важливим механізмом очищення клітин від різних продуктів обміну і деструктивних частинок, а також сприяють самовідновленню клітин.

 








Дата добавления: 2015-08-14; просмотров: 1516;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.