Существующие подходы к визуальному моделированию сложных динамических систем
В настоящее время существует великое множество визуальных средств моделирования. Договоримся не рассматривать в этой работе пакеты, ориентированные на узкие прикладные области (электроника, электромеханика и т.д.), поскольку, как отмечалось выше, элементы сложных систем относятся, как правило, к различным прикладным областям. Среди оставшихся универсальных пакетов (ориентированных на определенную математическую модель), мы не будем обращать внимание на пакеты, ориентированные на математические модели, отличные от простой динамической системы (уравнения в частных производных, статистические модели), а также на чисто дискретные и чисто непрерывные. Таким образом, предметом рассмотрения будут универсальные пакеты, позволяющие моделировать структурно-сложные гибридные системы.
Их можно условно разделить на три группы:
· пакеты "блочного моделирования";
· пакеты "физического моделирования";
· пакеты, ориентированные на схему гибридного автомата.
Это деление является условным прежде всего потому, что все эти пакеты имеют много общего: позволяют строить многоуровневые иерархические функциональные схемы, поддерживают в той или иной степени технологию ООМ, предоставляют сходные возможности визуализации и анимации. Отличия обусловлены тем, какой из аспектов сложной динамической системы сочтен наиболее важным.
Пакеты "блочного моделирования" ориентированы на графический язык иерархических блок схем. Элементарные блоки являются либо предопределенными, либо могут конструироваться с помощью некоторого специального вспомогательного языка более низкого уровня. Новый блок можно собрать из имеющихся блоков с использованием ориентированных связей и параметрической настройки. В число предопределенных элементарных блоков входят чисто непрерывные, чисто дискретные и гибридные блоки.
К достоинствами этого подхода следует отнести, прежде всего, чрезвычайную простоту создания не очень сложных моделей даже не слишком подготовленным пользователем. Другим достоинством является эффективность реализации элементарных блоков и простота построения эквивалентной системы. В то же время при создании сложных моделей приходится строить довольно громоздкие многоуровневые блок-схемы, не отражающие естественной структуры моделируемой системы. Другими словами, этот подход работает хорошо, когда есть подходящие стандартные блоки.
Наиболее известными представителями пакетами "блочного моделирования" являются:
- подсистема SIMULINK пакета MATLAB (MathWorks, Inc.; http://www.mathworks.com);
- EASY5 (Boeing)
- подсистема SystemBuild пакета MATRIXX (Integrated Systems, Inc. );
- VisSim (Visual Solution; http://www.vissim.com).
Пакеты "физического моделирования" позволяют использовать неориентированные и потоковые связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. Дискретная составляющая задается описанием дискретных событий (события задаются логическим условием или являются периодическими), при возникновении которых могут выполняться мгновенные присваивания переменным новых значений. Дискретные события могут распространяться по специальным связям. Изменение структуры уравнений возможно только косвенно через коэффициенты в правых частях (это обусловлено необходимостью символьных преобразований при переходе к эквивалентной системе).
Подход очень удобен и естественен для описания типовых блоков физических систем. Недостатками являются необходимость символьных преобразований, что резко сужает возможности описания гибридного поведения, а также необходимость численного решения большого числа алгебраических уравнений, что значительно усложняет задачу автоматического получения достоверного решения.
К пакетам "физического моделирования" следует отнести:
- "20-SIM" (Controllab Products B.V; http://www.rt.el.utwente.nl/20sim/);
- Dymola (Dymasim; http://www.dynasim.se);
- Omola, OmSim (Lund University; http://www.control.lth.se/~cace/omsim.html);
Как обобщение опыта развития систем этого направления междунородной группой ученых разработан язык Modelica (The Modelica Design Group; http://www.dynasim.se/modelica), предлагаемый в качестве стандарта при обмене описаниями моделей между различными пакетами.
Пакеты, основанные на использовании схемы гибридного автомата, позволяют очень наглядно и естественно описывать гибридные системы со сложной логикой переключений. Необходимость определения эквивалентной системы при каждом переключении заставляет использовать только ориентированные связи. Пользователь может сам определять новые классы блоков. Непрерывная составляющая поведения элементарного блока задается системой алгебро-дифференциальных уравнений и формул. К недостаткам следует также отнести избыточность описания при моделировании чисто непрерывных систем.
К этому направлению относится пакет Shift (California PATH: http://www/path.berkeley.edu/shift), а также отечественный пакет Model Vision Studium . Пакет Shift в большей стпени ориентирован на описание сложных динамических структур, а пакет MVS – на описание сложных поведений.
Заметим, что между вторым и третьим направлениями нет непреодолимой пропасти. В конце концов, невозможность из совместного использования обусловлена лишь сегодняшними вычислительными возможностями. В то же время, общая идеология построения моделей практически совпадает. В принципе, возможен комбинированный подход, когда в структуре модели должны выделяться составные блоки, элементы которых имеют чисто непрерывное поведение, и однократно преобразовываться к эквивалентному элементарному. Далее уже совокупное поведение этого эквивалентного блока должно использоваться при анализе гибридной системы.
При моделировании динамических систем чаще всего применяют следующие пакеты: подсистему Simulink входящую в пакет MatLab и VisSim. Их и рассмотрим далее.
Дата добавления: 2015-08-14; просмотров: 1005;