Пусть заданы векторы в прямоугольной системе координат

тогда линейные операции над ними в координатах имеют вид:

 

 

 

Скалярное произведение векторов.

 

Определение. Скалярным произведениемвекторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

× = ï ïï ïcosj

 

 

Свойства скалярного произведения:

 

1) × = ï ï2;

2) × = 0, если ^ или = 0 или = 0.

3) × = × ;

4) ×( + ) = × + × ;

5) (m = ×(m ) = m( × ); m=const

 

Если рассматривать векторы в декартовой прямоугольной системе координат, то

× = xa xb + ya yb + za zb;

 

 

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

 

;

 

Пример. Найти (5 + 3 )(2 - ), если

10 × - 5 × + 6 × - 3 × = 10 ,

т.к. .

 

Пример. Найти угол между векторами и , если

.

Т.е. = (1, 2, 3), = (6, 4, -2)

× = 6 + 8 – 6 = 8:

.

cosj =

 

Пример. Найти скалярное произведение (3 - 2 )×(5 - 6 ), если

15 × - 18 × - 10 × + 12 × = 15

+ 12×36 = 240 – 336 + 432 = 672 – 336 = 336.

 

Пример. Найти угол между векторами и , если

.

Т.е. = (3, 4, 5), = (4, 5, -3)

× = 12 + 20 - 15 =17 :

.

cosj =

 

Пример. При каком m векторы и перпендикулярны.

 

= (m, 1, 0); = (3, -3, -4)

.

 

Пример. Найти скалярное произведение векторов и , если

( )( ) =

 

= 10 +

 

+ 27 + 51 + 135 + 72 + 252 = 547.

 

 

Векторное произведение векторов.

 

Определение. Векторным произведениемвекторов и называется вектор , удовлетворяющий следующим условиям:

1) , где j - угол между векторами и ,

2) вектор ортогонален векторам и

3) , и образуют правую тройку векторов.

Обозначается: или .

 

 

 
 

 


j

 

 

Смешанное произведение векторов.

 

Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и .

Обозначается или ( , , ).

Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .

 

 

 
 

 


 

 

 

 

Уравнение поверхности в пространстве.

 

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

 

Общее уравнение плоскости.

Определение. Плоскостьюназывается поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

 

где А, В, С – координаты вектора -вектор нормали к плоскости.

 

Возможны следующие частные случаи:

 

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

 

 

Уравнение плоскости, проходящей через три точки.

 








Дата добавления: 2015-08-14; просмотров: 575;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.031 сек.