Линейная алгебра.

Основные определения.

Определение. Матрицейразмера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

 

А =

 

 

Основные действия над матрицами.

 

Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента.

 

Определение. Если число столбцов матрицы равно числу строк (m=n), то матрица называется квадратной.

 

Определение. Матрица вида:

= E,

называется единичной матрицей.

 

Определение. Если amn = anm , то матрица называется симметрической.

 

Пример. - симметрическая матрица

Определение.Квадратная матрица вида называется диагональнойматрицей.

 

Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

cij = aij ± bij

 

С = А + В = В + А.

 

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

 

 

a (А+В) =aА ± aВ

А(a±b) = aА ± bА

 

 

Пример. Даны матрицы А = ; B = , найти 2А + В.

2А = , 2А + В = .

 

Операция умножения матриц.

 

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

A×B = C;

.

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

 

Свойства операции умножения матриц.

1)Умножение матриц не коммутативно, т.е. АВ ¹ ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А×Е = Е×А = А

Очевидно, что для любых матриц выполняются следующее свойство:

A×O = O; O×A = O,

где О – нулеваяматрица.

 

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

 

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

 

4) Если произведение АВ определено, то для любого числа a верно соотношение:

a(AB) = (aA)B = A(aB).

 

5) Если определено произведение АВ , то определено произведение ВТАТ и выполняется равенство:

(АВ)Т = ВТАТ, где

индексом Т обозначается транспонированная матрица.

 

6) Заметим также, что для любых квадратных матриц det (AB) = detA×detB.

Понятие det (определитель, детерминант) будет рассмотрено ниже.

 

Определение. Матрицу В называют транспонированнойматрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В.

А = ; В = АТ= ;

 

другими словами, bji = aij.

 

В качестве следствия из предыдущего свойства (5) можно записать, что:

(ABC)T = CTBTAT,

при условии, что определено произведение матриц АВС.

 

Пример. Даны матрицы А = , В = , С = и число a = 2. Найти АТВ+aС.

AT = ; ATB = × = = ;

aC = ; АТВ+aС = + = .

 

Пример. Найти произведение матриц А = и В = .

АВ = × = .

ВА = × = 2×1 + 4×4 + 1×3 = 2 + 16 + 3 = 21.

Пример. Найти произведение матриц А= , В =

АВ = × = = .

 








Дата добавления: 2015-08-14; просмотров: 710;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.