Технологическое обеспечение качества кулинарной продукции качество кулинарной продукции 1 страница
Под качеством кулинарной продукции понимают совокупность потребительских свойств, обусловливающих ее пригодность удовлетворять потребность людей в рациональном питании. К наиболее существенным единичным показателям качества кулинарной продукции можно отнести безвредность, высокие пищевые, вкусовые и товарные достоинства.
Безвредность кулинарной продукции обеспечивают посредством строгою соблюдения санитарно-гигиенических требований, предъявляемых к производству кулинарной продукции, в том числе к способам и режимам обработки продуктов, на всех стадиях технологического процесса.
Высокие пищевые достоинства кулинарной продукции в оптимальном варианте обусловливают соответствие ее по составу формуле сбалансированного питания. Однако практически каждому виду кулинарной продукции присущи свои пищевые достоинства, как правило, отличные от формулы сбалансированного питания, что осложняет составление на ее основе физиологически сбалансированного рациона питания.
Многие блюда и кулинарные изделия, составляющие основной ассортимент выпускаемой предприятиями общественного питания продукции, нуждаются в повышении пищевой ценности путем увеличения содержания в них витамина С, некоторых витаминов группы В, лучшей сбалансированности аминокислотного состава белков по их общему содержанию, а также количеству полиненасыщенных жирных кислот.
Высокие вкусовые достоинства пищи - это те ее показатели, которые мы воспринимаем органолептически, к которым мы привыкли и с которыми связаны наши представления о вкусной, хорошо приготовленной пище.
По привычным органолептическим восприятиям определяют кулинарную готовность пищи.
Пища всегда должна быть вкусной, и профессиональный уровень современного инженера - технолога общественного питания определяется не способностью изобретать блюда, а умением правильно вести технологический процесс обработки продуктов и приготовлять вкусные кушанья. «То полезно и питательно, что приятно и вкусно», - говорил И.П. Павлов.
Для удовлетворения индивидуальных вкусов потребителей на предприятиях общественного питания необходима также разнообразная продукция в ассортименте.
Желательность и удобство потребления кулинарной продукции определяют ее высокие товарные достоинства. Для того чтобы продукция соответствовала этому показателю качества, например, капусту для фарша рубят, а не шинкуют соломкой, а копченую колбасу нарезают тонкими ломтиками.
Важно, чтобы эти показатели качества продукции имели количественное выражение и установленный средний уровень, который должен выдерживаться в течение всего времени реализации продукции. Установленный уровень не только определяет качество продукции, но и является отправной точкой для совершенствования технологии ее производства.
Примерами такого уровня могут служить предельные нормы содержания продуктов окисления жиров во фритюре (не более 1%), а также данные о составе кулинарной продукции, представленные в третьем томе справочника «Химический состав пищевых продуктов» (М.: Легкая и пищевая промышленность, 1984).
Кроме того, пищевые, вкусовые и товарные достоинства в общей оценке качества продукции должны иметь равное значение, т.е. нельзя говорить, что пища должна быть полезной и необязательно вкусной или наоборот. При совершенствовании технологии возможно улучшение одного или нескольких показателей качества конкретной продукции, но при этом остальные показатели должны соответствовать установленному уровню.
Необходимым условием для оценки качества кулинарной продукции или совершенствования ее технологии является также воспроизводимость последней, т.е. формулировка рекомендуемых способов и режимов обработки должна быть такой, чтобы по данной технологии разные специалисты могли приготовить равноценную продукцию независимо от ее количества.
Показатели качества продукции устанавливают различными методами: экспериментальным, расчетным, органолептическим, социологическим, экспертным, в принятом для них порядке.
Оценка уровня качества может производиться дифференциальным методом по единичным показателям качества, комплексным методом с использованием обобщающего показателя качества (например, энергоемкость продукции) или смешанным методом. Следует помнить, что только при строгом соблюдении этих положений можно объективно оценить достоинства той или иной технологии и качество производимой на ее основе продукции.
Ниже приводятся примеры рекомендаций, направленных на совершенствование технологии и повышение качества продукции при соблюдении указанных положений:
рекомендации по варке на пару рассыпчатого картофеля;
рекомендации по припусканию очищенных и нарезанных моркови и свеклы для салатов и винегретов, что улучшает санитарно-гигиенические условия производства продукции;
рекомендации по отбиванию и другим способам механической обработки мясных полуфабрикатов с целью сокращения продолжительности тепловой обработки и повышения органолептических показателей готовой продукции и др.
Примером необоснованного распространения особенностей технологии диетической продукции на технологию блюд обычного питания являются рекомендации по исключению пассерования кореньев и лука при производстве заправочных супов во избежание нагревания и нежелательных изменений жира. Однако исключать этот процесс из технологии блюд для здоровых людей нецелесообразно, так как при соблюдении установленных для пассерования кореньев и лука режимов жиры практически не изменяются, а вкусовые достоинства готовой продукции значительно улучшаются.
В процессе совершенствования технологии тех или иных блюд возможны изменения их рецептуры.
В случае небольших количественных изменений, которые не отражаются заметно на присущих данному блюду вкусе и товарных достоинствах, наименование блюда сохраняется, а уточненные или вновь рекомендуемые способы и режимы обработки продуктов являются усовершенствованной технологией исходного блюда. Подтверждается это и практикой работы предприятий общественного питания. Так, согласно Сборнику рецептур блюд и кулинарных изделий для предприятий общественного питания нормы закладки основных овощей (картофеля, капусты, свеклы и др.), приведенные в рецептурах горячих супов, могут быть увеличены или уменьшены не более чем на 10-15% при условии сохранения общей массы закладываемых овощей. Наименование блюда при этом не изменяется.
Если в рецептуру изделия внесены существенные качественные изменения, то следует говорить не о совершенствовании технологии исходного блюда, а о создании нового блюда со своей технологией производства и показателями качества. Сохранение за новым блюдом старого наименования недопустимо.
Примером совершенствования технологии блюд и изделий с небольшими изменениями в рецептуре, которые не носят принципиального характера, служат рекомендации по добавлению в рецептуру обжариваемых во фритюре изделий из теста (пончики, пирожки) 7-10% соевой муки. Добавки соевой муки повышают пищевые достоинства продукции, ускоряют процесс образования на поверхности изделий зажаристой корочки, что позволяет снизить температуру фритюра и сократить продолжительность процесса жарки изделий. Одновременно повышается химическая стабильность жира.
Качественное изменение рецептуры имеет место, например, при введении в тесто для булочки Школьная 10% морковного пюре с целью улучшения хлебопекарных свойств теста и товарных достоинств готового изделия. Поэтому булочка, изготовляемая по новой рецептуре, получила иное наименование - Осенняя.
Перспективны повышение качества кулинарной продукции и совершенствование технологии ее производства за счет улучшения сбалансированности пищевых компонентов в блюдах и изделиях, направленного использования технологических свойств продуктов и соблюдения технологических закономерностей производства.
Разработка рецептур с улучшенной сбалансированностью пищевых компонентов повышает эффективность использования продуктов. В проведенных в этом направлении работах И.И. Ковалева и других исследователей показано, что имеются резервы в повышении сбалансированности белкового компонента молока и круп в рецептурах молочных каш, лучшем сочетании гарнира и рыбы в рыбных блюдах. М.Г. Керимовой разработано более двух десятков рецептур крупяных и мучных блюд, в которых утилизация белка не хуже, чем в яичных и молочных блюдах.
В овощах в процессе тепловой обработки в значительной степени разрушается витамин С, поэтому рекомендации о добавлении ко многим овощным блюдам зелени петрушки, сельдерея, укропа или зеленого лука, высказанные в форме пожелания в Сборнике рецептур блюд и кулинарных изделий, должны на практике стать обязательными.
Повышение вкусовых достоинств кулинарной продукции связано с их количественной оценкой. В настоящее время возможно пополнить нормативные данные о содержании в блюдах и кулинарных изделиях сахара, соли, кислоты и других вкусовых компонентов реологическими характеристиками продукции, которые имеют важное значение для расчета машин и аппаратов в условиях индустриализации отрасли.
Технологические свойства продуктов
Технологические характеристики, или технологические свойства, сырья, полуфабрикатов и готовой продукции проявляются при их технологической обработке. Их можно подразделить на механические (прочность), физические (теплоемкость, плотность и др.), химические свойства (изменение состава, образование новых веществ) и особенности структуры (взаимное расположение и взаимосвязь составляющих продукт частей или компонентов).
Отдельные категории технологических свойств описывают инструментальными или органолептическими методами. Например, механические свойства и особенности структуры продуктов могут быть количественно описаны структурно-механическими показателями, принятыми в реологии (предел прочности, упругость, эластичность). При органолептической оценке этих свойств используют такие термины, как «нежное» мясо, «воздушный» пудинг, «густой» соус и т.д. Физико-химические свойства продуктов могут быть количественно описаны по плотности, цвету, составу продуктов, при органолептической оценке этих свойств пользуются такими терминами, как «кислый», «сладкий», «ароматный», и другими, обусловленными физико-химическими свойствами продуктов.
Технологические свойства обусловливают пригодность продуктов к тому или иному способу обработки и изменение их массы, объема, формы, консистенции, цвета и других показателей в ходе обработки, т.е. формирование качества готовой продукции.
Технологические свойства продуктов, прошедших тепловую обработку, отличаются от свойств сырых продуктов. Так, прочность ткани сырых корнеплодов позволяет очищать их механическим способом, а прочность ткани вареных корнеплодов (на порядок ниже) не позволяет этого делать.
В условиях индустриализации отрасли важное значение приобретает технологичность сырья, полуфабрикатов и готовой продукции, т.е. их пригодность или приспособленность к современным промышленным методам обработки при минимальных трудозатратах.
Высокой технологичностью обладает, например, картофель с клубнями правильной формы и неглубоким залеганием глазков, что позволяет подвергать его механической очистке с минимальным количеством отходов. Высокую пригодность к промышленным методам переработки имеют фаршевьге массы из мяса, рыбы и других продуктов; удобно порционировать жидкие однородные продукты и т.д.
Всякое новое сырье должно быть технологически изучено. На основе знания технологических свойств продуктов и разумного их использования возможно повышение качества и улучшение технологии кулинарной продукции.
Результаты исследования механизма образования и технологических свойств белково-полисахаридных комплексов позволили разработать научно обоснованную технологию соусных паст на овощной основе с растительным маслом, не расслаивающихся при нагревании.
С учетом технологических свойств полисахаридов и белков предложен новый способ осветления бульонов морковью, где действующим началом являются пектиновые вещества корнеплода.
Исследования поведения полисахаридов клеточных стенок овощей при тепловой обработке позволили объяснить особенности эффекта подкисления среды на развариваемость различных овощей и фруктов, а также специфику размягчения ткани свеклы при нагревании и охлаждении. Это позволило также разработать и рекомендовать рецептуры и технологию овощных желированных изделий.
Структурно-механические свойства котлетной массы из мяса и овощей послужили основанием для уточнения рецептуры массы с целью ее пригодности для обработки на существующем в промышленности оборудовании.
На основании исследования технологических свойств овощей разработаны рецептуры и технология производства изделий из теста с пониженной калорийностью.
Примером повышения технологичности продуктов и создания на этой основе промышленного способа производства кулинарной продукции служит новый способ изготовления голубцов, который предусматривает измельчение капусты, смешивание ее с прочими компонентами с последующим дозированием и формированием массы в колбасной оболочке.
Технологические свойства продуктов определяются составом и строением образующих их пищевых веществ, взаимосвязью этих веществ в отдельных структурных компонентах продуктов, т.е. можно говорить, что поведение и изменение пищевых веществ, образующих продукты, при тепловой обработке в совокупности определяют технологические свойства последних.
Поэтому во избежание дублирования материала целесообразно отдельно рассмотреть поведение и изменения при кулинарной обработке некоторых пищевых веществ, с которыми мы встречаемся на практике при переработке многих продуктов, а специфические изменения пищевых веществ и структуры продуктов в целом - рассмотреть в разделах, где описана кулинарная обработка этих продуктов.
Изменения белков
Изменения белков, которые наблюдаются при производстве полуфабрикатов и тепловой кулинарной обработке продуктов, влияют на выход, структурно-механические, органолептические и другие показатели качества продукции.
Глубина физико-химических изменений белков определяется их природными свойствами, характером внешних воздействий, концентрацией белков и другими факторами.
Наиболее значительные изменения белков связаны с их гидратацией, денатурацией и деструкцией.
Гидратация белков
На поверхности молекул нативного белка имеются так называемые полярные группы. Молекулы воды также обладают полярностью, и их можно представить в виде диполей с зарядами на концах, равными по значению, но противоположными по знаку. При контакте с белком диполи воды адсорбируются на поверхности белковой молекулы, ориентируясь вокруг полярных групп белка. Таким образом, основная часть воды, более или менее прочно связываемая в пищевых продуктах белками, является адсорбционной. Различают два вида адсорбции: ионную и молекулярную. Объясняется это постоянным наличием на поверхности белковой молекулы двух видов полярных групп: свободных и связанных.
Свободные полярные группы (аминогруппы диаминокислот, карбоксильные группы дикарбоновых кислот и др.) диссоциируют в растворе, определяя величину суммарного заряда белковой молекулы. Адсорбирование воды ионизированными свободными полярными группами белка называется ионной адсорбцией.
Связанные полярные группы (пептидные группы главных полипептидных цепей, гидроксильные, сульфгидрильные и др.) присоединяют молекулы воды за счет так называемой молекулярной адсорбции.
Величина молекулярной адсорбции воды постоянна для каждого вида белка, величина ионной адсорбции изменяется с изменением реакции среды. В изоэлектрической точке, когда степень диссоциации молекул белка минимальная и заряд белковой молекулы близок к нулю, способность белка связывать воду наименьшая. При сдвиге рН среды в ту или иную сторону от изоэлектрической точки усиливается диссоциация основных или кислотных групп белка, увеличивается ряд белковых молекул и усиливается гидратация белка. В технологическом процессе эти свойства белков используют для увеличения их водосвязывающей способности.
Адсорбционная вода удерживается белками вследствие образования между их молекулами и водой водородных связей (между атомом водорода одной молекулы и атомом кислорода другой). Водородные связи относятся к слабым, однако это компенсируется рачительным количеством связей: каждая молекула воды способна образовывать четыре водородные связи, которые распределяются между полярными группами белка и соседними молекулами воды.
В результате этого адсорбционная вода в белке оказывается довольно прочно связанной: она не отделяется от белка самопроизвольно и не может служить растворителем для других веществ.
В растворах небольшой концентрации молекулы белка полностью гидратированы ввиду наличия избыточного количества воды. Такие белковые растворы содержатся в молоке, жидком тесте, в некоторых смесях на основе яичного меланжа и пр.
В концентрированных белковых растворах и обводненных белковых студнях при добавлении воды происходит дополнительная гидратация белков (в известных пределах).
Дополнительная гидратация белков в концентрированных растворах наблюдается, например, при добавлении к яичной массе, предназначенной для изготовления омлетов, воды или молока.
В студне молекулы белка с помощью межмолекулярных связей разной природы образуют пространственную сетку, в ячейках которой удерживается вполне определенное для данного белка количество воды.
Способность белка образовывать студень обусловлена конфигурацией его белковых молекул. Чем больше асимметрия молекул белка (отношение длины к толщине или диаметру), тем меньшая концентрация белка необходима для образования студня. Вода, иммобилизованная в ячейках пространственной сетки студня, участвует в образовании его структуры, приближающейся к структуре твердого тела (студни способны сохранять форму, механическую прочность, упругость, пластичность). Отсюда понятно, почему белковые студни большинства продуктов обводнены больше, чем концентрированные растворы. Например, в миофиб-риллах мышечных волокон теплокровных животных содержится 15-20% белков, в саркоплазме - 25-30%.
Гидратация белков имеет большое практическое значение при производстве полуфабрикатов: при добавлении к измельченным животным или растительным продуктам воды, поваренной соли и других веществ и при перемешивании измельченных компонентов гидратация белков состоит из протекающих одновременно процессов растворения и набухания. При гидратации повышается липкость массы, в результате чего она хорошо формуется в изделия (полуфабрикаты), предназначенные для тепловой кулинарной обработки.
Дополнительная гидратация белков имеет место при добавлении к измельченному на мясорубке мясу воды. В рубленые бифштексы и фрикадели добавляют воды 10% массы мяса, в фарш для пельменей - 20%.
Сухие белки муки, крупы, бобовых, содержащиеся в продуктах в виде частиц высохшей цитоплазмы и алейроновых зерен, при контакте с водой набухают, образуя сплошной более или менее обводненный студень. Классическим примером гидратации такого типа является приготовление теста, в процессе которого белки муки при контакте с водой набухают, образуя клейковину. Реологические свойства теста, приготовляемого на основе муки и воды, в значительной мере зависят от соотношения этих компонентов. От степени гидратации белков в значительной степени зависит такой важнейший показатель качества готовой продукции, как сочность, и связанные с ней другие критерии органолептическои оценки. При оценке роли гидратационных процессов необходимо иметь в виду, что в пищевых продуктах наряду с адсорбционной водой, прочно связанной белками, содержится большее или меньшее количество осмотически и капиллярно-связанной воды, которая также влияет на качество продукции.
Денатурация белков
Денатурация - это нарушение нативной пространственной структуры белковой молекулы под влиянием внешних воздействии.
К числу таких внешних воздействий можно отнести нагревание (тепловая денатурация); встряхивание, взбивание и другие резкие механические воздействия (поверхностная денатурация); высокую концентрацию водородных или гидроксильных ионов (кислотная или щелочная денатурация); интенсивную дегидратацию при сушке и замораживании продуктов и др.
Для технологических процессов производства продукции общественного питания наибольшее практическое значение имеет тепловая денатурация белков. При нагревании белков усиливается тепловое движение атомов и полипептидных цепей в белковых молекулах, в результате чего разрушаются так называемые слабые поперечные связи между полипептидными цепями (например, водородные), а также ослабляются гидрофобные и другие взаимодействия между боковыми цепями. В результате этого изменяется конформация полипептидных цепей в белковой молекуле. У глобулярных белков развертываются белковые глобулы с последующим свертыванием по новому типу; прочные (ковалентные) связи белковой молекулы (пептидные, дисульфидные) при такой перестройке не нарушаются. Тепловую денатурацию фибриллярного белка коллагена можно представить в виде плавления, так как в результате разрушения большого числа поперечных связей между полипептидными цепями фибриллярная структура его исчезает, а коллагеновые волокна превращаются в сплошную стекловидную массу.
В молекулярной перестройке белков при денатурации активная роль принадлежит воде, которая участвует в образовании новой конформационной структуры денатурированного белка. Полностью обезвоженные белки, выделенные в кристаллическом виде, очень устойчивы и не денатурируют даже при длительном нагревании до температуры 100 °С и выше. Денатурирующий эффект внешних воздействий тем сильнее, чем выше гидратация белков и ниже их концентрация в растворе.
Денатурация сопровождается изменениями важнейших свойств белка: потерей биологической активности, видовой специфичности, способности к гидратации (растворению, набуханию); улучшением атакуемости протеолитическими-ферментами (в том числе пищеварительными); повышением реакционной способности белков; агрегированием белковых молекул.
Потеря белками биологической активности в результате их тепловой денатурации приводит к инактивации ферментов, содержащихся в растительных и животных клетках, а также к отмиранию микроорганизмов, попадающих в продукты в процессе их производства, транспортирования и хранения. В целом этот процесс оценивается положительно, так как готовую продукцию при отсутствии ее повторной обсемененности микроорганизмами можно хранить сравнительно продолжительное время (в охлажденном или мороженом виде).
В результате потери белками видовой специфичности пищевая ценность продукта не снижается. В ряде случаев это свойство белков используется для контроля технологического процесса. Например, по изменению окраски хромопротеида мяса - миогло-бина с красной на светло-коричневую судят о кулинарной готовности большинства мясных блюд.
Потеря белками способности к гидратации объясняется тем, что при изменении конформации полипептидных цепей на поверхности молекул белка появляются гидрофобные группы, а гидрофильные оказываются блокированными в результате образования внутримолекулярных связей.
Улучшение гидролиза денатурированного белка протеолитическими ферментами, повышение его чувствительности к многим химическим реактивам объясняется тем, что в нативном белке пептидные группы и многие функциональные (реакционноспособные) группы экранированы внешней гидратной оболочкой или находятся внутри белковой глобулы и таким образом защищены от внешних воздействий.
При денатурации указанные группы оказываются на поверхности белковой молекулы.
Агрегирование - это взаимодействие денатурированных молекул белка, в результате которого образуются межмолекулярные связи, как прочные, например, дисульфидные, так и многочисленные слабые.
Следствием агрегирования белковых молекул является образование более крупных частиц. Последствия дальнейшего агрегирования частиц белка различны в зависимости от концентрации белка в растворе. В малоконцентрированных растворах образуются хлопья белка, выпадающие в осадок или всплывающие на поверхность жидкости (часто с образованием пены). Примерами агрегирования такого типа являются выпадение в осадок хлопьев денатурированного лактоальбумина (при кипячении молока), образование хлопьев и пены белков на поверхности мясных и рыбных бульонов. Концентрация белков в этих растворах не превышает 1% *
При денатурации белков в более концентрированных белковых растворах в результате их агрегирования образуется сплошной студень, удерживающий всю содержащуюся в системе воду. Такой тип агрегирования белков наблюдается при тепловой обработке мяса, рыбы, яиц и различных смесей на их основе. Оптимальная концентрация белков, при которой белковые растворы в условиях нагревания образуют сплошной студень, неизвестна. Принимая во внимание, что способность к студнеобразованию у белков зависит от конфигурации (асимметрии) молекул, надо полагать, что для разных белков указанные пределы концентраций различны.
Белки в состоянии более или менее обводненных студней при тепловой денатурации уплотняются, т.е. происходит их дегидратация с отделением жидкости в окружающую среду. Студень, подвергнутый нагреванию, как правило, имеет меньшие объем, массу, пластичность, а также повышенную механическую прочность и большую упругость по сравнению с исходным студнем нативных белков. Эти изменения также являются следствием агрегирования молекул денатурированных белков. Реологические характеристики таких уплотненных студней зависят от температуры, рН среды и продолжительности нагревания.
Денатурация белков в студнях, сопровождающаяся их уплотнением и отделением воды, происходит при тепловой обработке мяса, рыбы, варке бобовых, выпечке изделий из теста.
Каждый белок имеет определенную температуру денатурации. В пищевых продуктах и полуфабрикатах обычно отмечают низший температурный уровень, при котором начинаются видимые денатурационные изменения наиболее лабильных белков. Например, для белков рыбы эта температура составляет около 30 С, яичного белка - 55 С.
При значениях рН среды, близких к изоэлектрической точке белка, денатурация происходит при более низкой температуре и сопровождается максимальной дегидратацией белка. Смещение рН среды в ту или иную сторону от изоэлектрической точки белка способствует повышению его термостабильности. Так, выделенный из мышечной ткани рыб глобулин X, который имеет изоэлектрическую точку при рН 6,0, в слабокислой среде (рН 6,5) денатурирует при 50 °С, в нейтральной (рН 7,0) - при 80 °С.
Реакция среды влияет и на степень дегидратации белков в студнях при тепловой обработке продуктов. Направленное изменение реакции среды широко используется в технологии для улучшения качества блюд. Так, при припускании птицы, рыбы, тушении мяса, мариновании мяса и рыбы перед жаркой добавляют кислоту, вино или другие кислые приправы для создания кислой среды со значениями рН, лежащими значительно ниже изоэлектрической точки белков продукта. В этих условиях дегидратация белков в студнях снижается и готовый продукт получается более сочным.
В кислой среде набухает коллаген мяса и рыбы, снижается его температура денатурации, ускоряется переход в глютин, в результате чего готовый продукт получается более нежным.
Температура денатурации белков повышается в присутствии других, более термостабильных белков и некоторых веществ небелковой природы, например сахарозы. Это свойство белков используют, когда при тепловой обработке возникает необходимость повысить температуру смеси (например, в целях пастеризации), не допуская денатурации белков. Тепловая денатурация некоторых белков может происходить без видимых изменений белкового раствора, что наблюдается, например, у казеина молока.
Пищевые продукты, доведенные тепловой обработкой до готовности, могут содержать большее или меньшее количество нативных, неденатурированных белков, в том числе некоторых ферментов.
Деструкция белков
При тепловой обработке продуктов изменения белков не ограничиваются только денатурацией. Для доведения продукта до полной готовности денатурированные белки нагревают при температурах, близких к 100 °С, более или менее продолжительное время. В этих условиях наблюдаются дальнейшие изменения белков, связанные с разрушением их макромолекул. На первом этапе изменений от белковых молекул могут отщепляться такие летучие продукты, как аммиак, сероводород, фосфористый водород, углекислый газ и др. Накапливаясь в продукте и окружающей среде, эти вещества участвуют в образовании вкуса и аромата готовой пищи. При длительном гидротермическом воздействии происходит деполимеризация белковой молекулы с образованием водорастворимых азотистых веществ. Примером деструкции денатурированного белка является переход коллагена в глютин.
Дата добавления: 2015-08-14; просмотров: 870;